Do you want to publish a course? Click here

Probing the relaxation towards equilibrium in an isolated strongly correlated 1D Bose gas

200   0   0.0 ( 0 )
 Added by Stefan Trotzky
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The problem of how complex quantum systems eventually come to rest lies at the heart of statistical mechanics. The maximum entropy principle put forward in 1957 by E. T. Jaynes suggests what quantum states one should expect in equilibrium but does not hint as to how closed quantum many-body systems dynamically equilibrate. A number of theoretical and numerical studies accumulate evidence that under specific conditions quantum many-body models can relax to a situation that locally or with respect to certain observables appears as if the entire system had relaxed to a maximum entropy state. In this work, we report the experimental observation of the non-equilibrium dynamics of a density wave of ultracold bosonic atoms in an optical lattice in the regime of strong correlations. Using an optical superlattice, we are able to prepare the system in a well-known initial state with high fidelity. We then follow the dynamical evolution of the system in terms of quasi-local densities, currents, and coherences. Numerical studies based on the time-dependent density-matrix renormalization group method are in an excellent quantitative agreement with the experimental data. For very long times, all three local observables show a fast relaxation to equilibrium values compatible with those expected for a global maximum entropy state. We find this relaxation of the quasi-local densities and currents to initially follow a power-law with an exponent being significantly larger than for free or hardcore bosons. For intermediate times the system fulfills the promise of being a dynamical quantum simulator, in that the controlled dynamics runs for longer times than present classical algorithms based on matrix product states can efficiently keep track of.



rate research

Read More

136 - Sagarika Basak , Han Pu 2021
Two-component coupled Bose gas in a 1D optical lattice is examined. In addition to the postulated Mott insulator and Superfluid phases, multiple bosonic components manifest spin degrees of freedom. Coupling of the components in the Bose gas within same site and neighboring sites leads to substantial change in the previously observed spin phases revealing fascinating remarkable spin correlations. In the presence of strong interactions it gives rise to unconventional effective ordering of the spins leading to unprecedented spin phases: site-dependent $ztextsf{-}x$ spin configuration with tunable (by hopping parameter) proclivity of spin alignment along $z$. Exact analysis and Variational Monte Carlo (VMC) along with stochastic minimization on Entangled Plaquette State (EPS) bestow a unique and enhanced perspective into the system beyond the scope of mean-field treatment. The physics of complex intra-component tunneling and inter-component coupling and filling factor greater than unity are discussed.
Understanding and classifying nonequilibrium many-body phenomena, analogous to the classification of equilibrium states of matter into universality classes, is an outstanding problem in physics. Any many-body system, from stellar matter to financial markets, can be out of equilibrium in a myriad of ways; since many are also difficult to experiment on, it is a major goal to establish universal principles that apply to different phenomena and physical systems. At the heart of the classification of equilibrium states is the universality seen in the self-similar spatial scaling of systems close to phase transitions. Recent theoretical work, and first experimental evidence, suggest that isolated many-body systems far from equilibrium generically exhibit dynamic (spatiotemporal) self-similar scaling, akin to turbulent cascades and the Family-Vicsek scaling in classical surface growth. Here we observe bidirectional dynamic scaling in an isolated quench-cooled atomic Bose gas; as the gas thermalises and undergoes Bose-Einstein condensation, it shows self-similar net flows of particles towards the infrared (smaller momenta) and energy towards the ultraviolet (smaller lengthscales). For both infrared (IR) and ultraviolet (UV) dynamics we find that the scaling exponents are independent of the strength of the interparticle interactions that drive the thermalisation.
112 - S. Erne , R. Buecker , T. Gasenzer 2018
We provide experimental evidence of universal dynamics far from equilibrium during the relaxation of an isolated one-dimensional Bose gas. Following a rapid cooling quench, the system exhibits universal scaling in time and space, associated with the approach of a non-thermal fixed point. The time evolution within the scaling period is described by a single universal function and scaling exponent, independent of the specifics of the initial state. Our results provide a quantum simulation in a regime, where to date no theoretical predictions are available. This constitutes a crucial step in the verification of universality far from equilibrium. If successful, this may lead to a comprehensive classification of systems based on their universal properties far from equilibrium, relevant for a large variety of systems at different scales.
The dynamics of strongly interacting many-body quantum systems are notoriously complex and difficult to simulate. A new theory, generalized hydrodynamics (GHD), promises to efficiently accomplish such simulations for nearly-integrable systems. It predicts the evolution of the distribution of rapidities, which are the momenta of the quasiparticles in integrable systems. GHD was recently tested experimentally for weakly interacting atoms, but its applicability to strongly interacting systems has not been experimentally established. Here we test GHD with bundles of one-dimensional (1D) Bose gases by performing large trap quenches in both the strong and intermediate coupling regimes. We measure the evolving distribution of rapidities, and find that theory and experiment agree well over dozens of trap oscillations, for average dimensionless coupling strengths that range from 0.3 to 9.3. By also measuring momentum distributions, we gain experimental access to the interaction energy and thus to how the quasiparticles themselves evolve. The accuracy of GHD demonstrated here confirms its wide applicability to the simulation of nearly-integrable quantum dynamical systems. Future experimental studies are needed to explore GHD in spin chains, as well as the crossover between GHD and regular hydrodynamics in the presence of stronger integrability breaking perturbations.
We study experimentally and numerically the equilibrium density profiles of a trapped two-dimensional $^{87}$Rb Bose gas, and investigate the equation of state of the homogeneous system using the local density approximation. We find a clear discrepancy between in-situ measurements and Quantum Monte Carlo simulations, which we attribute to a non-linear variation of the optical density of the atomic cloud with its spatial density. However, good agreement between experiment and theory is recovered for the density profiles measured after time-of-flight, taking advantage of their self-similarity in a two-dimensional expansion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا