Do you want to publish a course? Click here

Optimal quantum tomography with constrained elementary measurements arising from unitary bases

119   0   0.0 ( 0 )
 Added by Sibasish Ghosh
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The purpose of this paper is to introduce techniques of obtaining optimal ways to determine a d-level quantum state or distinguish such states. It entails designing constrained elementary measurements extracted from maximal abelian subsets of a unitary basis U for the operator algebra B(H) of a Hilbert space H of finite dimension d > 3 or, after choosing an orthonormal basis for H, for the *-algebra Md of complex matrices of order d > 3. Illustrations are given for the techniques. It is shown that the Schwinger basis U of unitary operators can give for d, a product of primes p and a, the ideal number d^2 of rank one projectors that have a few quantum mechanical overlaps (or, for that matter, a few angles between the corresponding unit vectors). We also give a combination of the tensor product and constrained elementary measurement techniques to deal with all d. A comparison is drawn for different forms of unitary bases for the Hilbert space and also for different Hilbert space factors of the tensor product. In the process we also study the equivalence relation on unitary bases defined by R. F. Werner [J. Phys. A: Math. Gen. 34 (2001) 7081], connect it to local operations on maximally entangled vectors bases, find an invariant for equivalence classes in terms of certain commuting systems, called fan representations, and, relate it to mutually unbiased bases and Hadamard matrices. Illustrations are given in the context of latin squares and projective representations as well.



rate research

Read More

Linear optical systems acting on photon number states produce many interesting evolutions, but cannot give all the allowed quantum operations on the input state. Using Toponogovs theorem from differential geometry, we propose an iterative method that, for any arbitrary quantum operator $U$ acting on $n$ photons in $m$ modes, returns an operator $widetilde{U}$ which can be implemented with linear optics. The approximation method is locally optimal and converges. The resulting operator $widetilde{U}$ can be translated into an experimental optical setup using previous results.
We implement the so-called Weyl-Heisenberg covariant integral quantization in the case of a classical system constrained by a bounded or semi-bounded geometry. The procedure, which is free of the ordering problem of operators, is illustrated with the basic example of the one-dimensional motion of a free particle in an interval, and yields a fuzzy boundary, a position-dependent mass (PDM), and an extra potential on the quantum level. The consistency of our quantization is discussed by analyzing the semi-classical phase space portrait of the derived quantum dynamics, which is obtained as a regularization of its original classical counterpart.
Quantum tomography is a critically important tool to evaluate quantum hardware, making it essential to develop optimized measurement strategies that are both accurate and efficient. We compare a variety of strategies using nearly pure test states. Those that are informationally complete for all states are found to be accurate and reliable even in the presence of errors in the measurements themselves, while those designed to be complete only for pure states are far more efficient but highly sensitive to such errors. Our results highlight the unavoidable tradeoffs inherent to quantum tomography.
Many quantum statistical models are most conveniently formulated in terms of non-orthonormal bases. This is the case, for example, when mixtures and superpositions of coherent states are involved. In these instances, we show that the analytical evaluation of the quantum Fisher information may be greatly simplified by bypassing both the diagonalization of the density matrix and the orthogonalization of the basis. The key ingredient in our method is the Gramian matrix (i.e. the matrix of scalar products between basis elements), which may be interpreted as a metric tensor for index contraction. As an application, we derive novel analytical results for several estimation problems involving noisy Schroedinger cat states.
We provide a detailed analysis of the question: how many measurement settings or outcomes are needed in order to identify a quantum system which is constrained by prior information? We show that if the prior information restricts the system to a set of lower dimensionality, then topological obstructions can increase the required number of outcomes by a factor of two over the number of real parameters needed to characterize the system. Conversely, we show that almost every measurement becomes informationally complete with respect to the constrained set if the number of outcomes exceeds twice the Minkowski dimension of the set. We apply the obtained results to determine the minimal number of outcomes of measurements which are informationally complete with respect to states with rank constraints. In particular, we show that 4d-4 measurement outcomes (POVM elements) is enough in order to identify all pure states in a d-dimensional Hilbert space, and that the minimal number is at most 2 log_2(d) smaller than this upper bound.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا