Do you want to publish a course? Click here

Probing cluster environments of blazars through gamma-gamma absorption

129   0   0.0 ( 0 )
 Added by Iurii Sushch
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Most blazars are known to be hosted in giant elliptic galaxies, but their cluster environments have not been thoroughly investigated. Cluster environments may contain radiation fields of low-energy photons created by nearby galaxies and/or stars in the intracluster medium that produce diffuse intracluster light. These radiation fields may absorb very high energy gamma rays ($Egtrsim100$ GeV; VHE) and trigger pair cascades with further production of subsequent generations of gamma rays with lower energies via inverse Compton scattering on surrounding radiation fields leaving a characteristic imprint in the observed spectral shape. The change of the spectral shape of the blazar reflects the properties of its ambient medium. We show, however, that neither intracluster light nor the radiation field of an individual nearby galaxy can cause substantial gamma-gamma absorption. Substantial gamma-gamma absorption is possible only in the case of multiple, $gtrsim5$, luminous nearby galaxies. This situation is not found in the local Universe, but may be possible at larger redshifts ($zgtrsim2$). Since VHE gamma rays from such distances are expected to be strongly absorbed by the extragalactic background light, we consider possible signatures of gamma-ray induced pair cascades by calculating the expected GeV flux which appears to be below the Fermi sensitivity even for $sim10$ nearby galaxies.



rate research

Read More

Since its launch in April 2007, the AGILE satellite detected with its Gamma-Ray Imaging Detector (GRID) several blazars at high significance: 3C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3C 273, W Comae, Mrk 421 and PKS 0537-441. Moreover, AGILE was able both to rapidly respond to sudden changes in blazar activity state at other wavelengths and to alert other telescopes quickly in response to changes in the gamma-ray fluxes. Thus, we were able to obtain multiwavelength data from other observatories such as Spitzer, Swift, RXTE, Suzaku, INTEGRAL, MAGIC, VERITAS, as well as radio-to-optical coverage by means of the GASP Project of the WEBT and REM. This large multifrequency coverage gave us the opportunity to study the Spectral Energy Distribution of these sources from radio to gamma-rays energy bands and to investigate the different mechanisms responsible for their emission. We present an overview of the AGILE results on these gamma-ray blazars and the relative multifrequency data.
143 - Krzysztof Nalewajko 2012
I present a systematic study of gamma-ray flares in blazars. For this purpose, I propose a very simple and practical definition of a flare as a period of time, associated with a given flux peak, during which the flux is above half of the peak flux. I select a sample of 40 brightest gamma-ray flares observed by Fermi/LAT during the first 4 years of its mission. The sample is dominated by 4 blazars: 3C 454.3, PKS 1510-089, PKS 1222+216 and 3C 273. For each flare, I calculate a light curve and variations of the photon index. For the whole sample, I study the distributions of the peak flux, peak luminosity, duration, time asymmetry, average photon index and photon index scatter. I find that: 1) flares produced by 3C 454.3 are longer and have more complex light curves than those produced by other blazars; 2) flares shorter than 1.5 days in the source frame tend to be time-asymmetric with the flux peak preceding the flare midpoint. These differences can be largely attributed to a smaller viewing angle of 3C 454.3 as compared to other blazars. Intrinsically, the gamma-ray emitting regions in blazar jets may be structured and consist of several domains. I find no regularity in the spectral gamma-ray variations of flaring blazars.
192 - Anna Barnacka 2014
We investigate potential $gamma-gamma$ absorption of gamma-ray emission from blazars arising from inhomogeneities along the line of sight, beyond the diffuse Extragalactic Background Light (EBL). As plausible sources of excess $gamma-gamma$ opacity, we consider (1) foreground galaxies, including cases in which this configuration leads to strong gravitational lensing, (2) individual stars within these foreground galaxies, and (3) individual stars within our own galaxy, which may act as lenses for microlensing events. We found that intervening galaxies close to the line-of-sight are unlikely to lead to significant excess $gamma-gamma$ absorption. This opens up the prospect of detecting lensed gamma-ray blazars at energies above 10 GeV with their gamma-ray spectra effectively only affected by the EBL. The most luminous stars located either in intervening galaxy or in our galaxy provides an environment in which these gamma-rays could, in principle, be significantly absorbed. However, despite a large microlensing probability due to stars located in intervening galaxies, gamma-rays avoid absorption by being deflected by the gravitational potentials of such intervening stars to projected distances (impact parameters) where the resulting $gamma-gamma$ opacities are negligible. Thus, neither of the intervening excess photon fields considered here, provide a substantial source of excess $gamma-gamma$ opacity beyond the EBL, even in the case of very close alignments between the background blazar and a foreground star or galaxy.
We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma- ray--loud and gamma-ray--quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray--loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray--quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3{sigma} level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band lu- minosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high synchrotron- peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray--quiet sources show similar median polarization fractions although they are all low synchrotron-peaked. We also find that the random- ness of the polarization angle depends on the synchrotron peak frequency. For high synchrotron-peaked sources it tends to concentrate around preferred directions while for low synchrotron-peaked sources it is more variable and less likely to have a pre- ferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock.
So far, no systematic long-term blazar monitoring programs and detailed variability studies exist at sub-mm wavelengths. Here, we present a new sub-mm blazar monitoring program using the APEX 12-m telescope. A sample of about 40 gamma-ray blazars has been monitored since 2007/2008 with the LABOCA bolometer camera at 345 GHz. First light curves, preliminary variability results and a first comparison with the longer cm/mm bands (F-GAMMA program) are presented, demonstrating the extreme variability characteristics of blazars at such short wavelengths.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا