Do you want to publish a course? Click here

RoboPol: The optical polarization of gamma-ray--loud and gamma-ray--quiet blazars

79   0   0.0 ( 0 )
 Added by Emmanouil Angelakis
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma- ray--loud and gamma-ray--quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray--loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray--quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3{sigma} level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band lu- minosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high synchrotron- peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray--quiet sources show similar median polarization fractions although they are all low synchrotron-peaked. We also find that the random- ness of the polarization angle depends on the synchrotron peak frequency. For high synchrotron-peaked sources it tends to concentrate around preferred directions while for low synchrotron-peaked sources it is more variable and less likely to have a pre- ferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock.



rate research

Read More

We use optical data from the Palomar Transient Factory (PTF) and the Catalina Real-Time Transient Survey (CRTS) to study the variability of gamma-ray detected and non-detected objects in a large population of active galactic nuclei (AGN) selected from the Candidate Gamma-Ray Blazar Survey and Fermi Gamma-Ray Space Telescope catalogs. Our samples include 714 sources with PTF data and 1244 sources with CRTS data. We calculate the intrinsic modulation index to quantify the optical variability amplitude in these samples. We find the gamma-ray detected objects to be more variable than the non-detected ones. The flat spectrum radio quasars (FSRQs) are more variable than the BL Lac objects in our sample, but the significance of the difference depends on the sample used. When dividing the objects based on their synchrotron peak frequency, we find the low synchrotron peaked (LSP) objects to be significantly more variable than the high synchrotron peaked (HSP) ones, explaining the difference between the FSRQs and BL Lacs. This could be due to the LSPs being observed near their electron energy peak, while in the HSPs the emission is caused by lower energy electrons, which cool more slowly. We also find a significant correlation between the optical and gamma-ray fluxes that is stronger in the HSP BL Lacs than in the FSRQs. The FSRQs in our sample are also more Compton dominated than the HSP BL Lacs. These findings are consistent with models where the gamma-ray emission of HSP objects is produced by the synchrotron self-Compton mechanism, while the LSP objects need an additional external Compton component that increases the scatter in the flux-flux correlation.
Since its launch in April 2007, the AGILE satellite detected with its Gamma-Ray Imaging Detector (GRID) several blazars at high significance: 3C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3C 273, W Comae, Mrk 421 and PKS 0537-441. Moreover, AGILE was able both to rapidly respond to sudden changes in blazar activity state at other wavelengths and to alert other telescopes quickly in response to changes in the gamma-ray fluxes. Thus, we were able to obtain multiwavelength data from other observatories such as Spitzer, Swift, RXTE, Suzaku, INTEGRAL, MAGIC, VERITAS, as well as radio-to-optical coverage by means of the GASP Project of the WEBT and REM. This large multifrequency coverage gave us the opportunity to study the Spectral Energy Distribution of these sources from radio to gamma-rays energy bands and to investigate the different mechanisms responsible for their emission. We present an overview of the AGILE results on these gamma-ray blazars and the relative multifrequency data.
151 - Krzysztof Nalewajko 2012
I present a systematic study of gamma-ray flares in blazars. For this purpose, I propose a very simple and practical definition of a flare as a period of time, associated with a given flux peak, during which the flux is above half of the peak flux. I select a sample of 40 brightest gamma-ray flares observed by Fermi/LAT during the first 4 years of its mission. The sample is dominated by 4 blazars: 3C 454.3, PKS 1510-089, PKS 1222+216 and 3C 273. For each flare, I calculate a light curve and variations of the photon index. For the whole sample, I study the distributions of the peak flux, peak luminosity, duration, time asymmetry, average photon index and photon index scatter. I find that: 1) flares produced by 3C 454.3 are longer and have more complex light curves than those produced by other blazars; 2) flares shorter than 1.5 days in the source frame tend to be time-asymmetric with the flux peak preceding the flare midpoint. These differences can be largely attributed to a smaller viewing angle of 3C 454.3 as compared to other blazars. Intrinsically, the gamma-ray emitting regions in blazar jets may be structured and consist of several domains. I find no regularity in the spectral gamma-ray variations of flaring blazars.
We present the time variability properties of a sample of six blazars, AO 0235+164, 3C 273, 3C 279, PKS 1510-089, PKS 2155-304, and 3C 454.3, at optical-IR as well as gamma-ray energies. These observations were carried out as a part of the Yale/SMARTS program during 2008-2010 that has followed the variations in emission of the bright Fermi-LAT-monitored blazars in the southern sky with closely-spaced observations at BVRJK bands. We find the optical/IR time variability properties of these blazars to be remarkably similar to those at the gamma-ray energies. The power spectral density (PSD) functions of the R-band variability of all six blazars are fit well by simple power-law functions with negative slope such that there is higher amplitude variability on longer timescales. No clear break is identified in the PSD of any of the sources. The average slope of the PSD of R-band variability of these blazars is similar to what was found by the Fermi team for the gamma-ray variability of a larger sample of bright blazars. This is consistent with leptonic models where the optical-IR and gamma-ray emission is generated by the same population of electrons through synchrotron and inverse-Compton processes, respectively. The prominent flares present in the optical-IR as well as the gamma-ray light curves of these blazars are predominantly symmetric, i.e., have similar rise and decay timescales, indicating that the long-term variability is dominated by the crossing time of radiation or a disturbance through the emission region rather than by the acceleration or energy-loss timescales of the radiating electrons. In the blazar 3C 454.3, which has the highest-quality light curves, the location of a large gamma-ray outburst during 2009 December is consistent with being in the jet at ~18 pc from the central engine. This poses strong constraints on the models of high energy emission in the jets of blazars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا