Do you want to publish a course? Click here

Braided autoequivalences and the equivariant Brauer group of a quasitriangular Hopf algebra

270   0   0.0 ( 0 )
 Added by Yinhuo Zhang
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Let $(H, R)$ be a finite dimensional quasitriangular Hopf algebra over a field $k$, and $_Hmathcal{M}$ the representation category of $H$. In this paper, we study the braided autoequivalences of the Drinfeld center $^H_Hmathcal{YD}$ trivializable on $_Hmathcal{M}$. We establish a group isomorphism between the group of those autoequivalences and the group of quantum commutative bi-Galois objects of the transmutation braided Hopf algebra $_RH$. We then apply this isomorphism to obtain a categorical interpretation of the exact sequence of the equivariant Brauer group $mathrm{BM}(k, H,R)$ in [18]. To this aim, we have to develop the braided bi-Galois theory initiated by Schauenburg in [14,15], which generalizes the Hopf bi-Galois theory over usual Hopf algebras to the one over braided Hopf algebras in a braided monoidal category.



rate research

Read More

133 - Juan Cuadra , Bojana Femic 2009
A deeper understanding of recent computations of the Brauer group of Hopf algebras is attained by explaining why a direct product decomposition for this group holds and describing the non-interpreted factor occurring in it. For a Hopf algebra $B$ in a braided monoidal category $C$, and under certain assumptions on the braiding (fulfilled if $C$ is symmetric), we construct a sequence for the Brauer group $BM(C;B)$ of $B$-module algebras, generalizing Beatties one. It allows one to prove that $BM(C;B) cong Br(C) times Gal(C;B),$ where $Br(C)$ is the Brauer group of $C$ and $Gal(C;B)$ the group of $B$-Galois objects. We also show that $BM(C;B)$ contains a subgroup isomorphic to $Br(C) times Hc(C;B,I),$ where $Hc(C;B,I)$ is the second Sweedler cohomology group of $B$ with values in the unit object $I$ of $C$. These results are applied to the Brauer group of a quasi-triangular Hopf algebra that is a Radford biproduct $B times H$, where $H$ is a usual Hopf algebra over a field $K$, the Hopf subalgebra generated by the quasi-triangular structure $R$ is contained in $H$ and $B$ is a Hopf algebra in the category ${}_HM$ of left $H$-modules. The Hopf algebras whose Brauer group was recently computed fit this framework. We finally show that $BM(K,H,R) times Hc({}_HM;B,K)$ is a subgroup of the Brauer group $BM(K,B times H,R),$ confirming the suspicion that a certain cohomology group of $B times H$ (second lazy cohomology group was conjectured) embeds into $BM(K,B times H,R).$ New examples of Brauer groups of quasi-triangular Hopf algebras are computed using this sequence.
130 - Hans Wenzl 2011
We define a new $q$-deformation of Brauers centralizer algebra which contains Hecke algebras of type $A$ as unital subalgebras. We determine its generic structure as well as the structure of certain semisimple quotients. This is expected to have applications for constructions of subfactors of type II$_1$ factors and for module categories of fusion categories of type $A$ corresponding to certain symmetric spaces.
162 - Juan Cuadra , Ehud Meir 2014
Let $p$ be an odd prime number and $K$ a number field having a primitive $p$-th root of unity $zeta.$ We prove that Nikshychs non-group theoretical Hopf algebra $H_p$, which is defined over $mathbb{Q}(zeta)$, admits a Hopf order over the ring of integers $mathcal{O}_K$ if and only if there is an ideal $I$ of $mathcal{O}_K$ such that $I^{2(p-1)} = (p)$. This condition does not hold in a cyclotomic field. Hence this gives an example of a semisimple Hopf algebra over a number field not admitting a Hopf order over any cyclotomic ring of integers. Moreover, we show that, when a Hopf order over $mathcal{O}_K$ exists, it is unique and we describe it explicitly.
147 - Dorothea Bahns 2007
The operator valued distributions which arise in quantum field theory on the noncommutative Minkowski space can be symbolized by a generalization of chord diagrams, the dotted chord diagrams. In this framework, the combinatorial aspects of quasiplanar Wick products are understood in terms of the shuffle Hopf algebra of dotted chord diagrams, leading to an algebraic characterization of quasiplanar Wick products as a convolution. Moreover, it is shown that the distributions do not provide a weight system for universal knot invariants.
In this paper we construct a Chern-Weil isomorphism for the equivariant Brauer group of R^n-actions on a principal torus bundle, where the target for this isomorphism is a dimensionally reduced Cech cohomology group. From this point of view, the usual forgetful functor takes the form of a connecting homomorphism in a long exact sequence in dimensionally reduced cohomology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا