Do you want to publish a course? Click here

The effect of magnetic field on the intrinsic detection efficiency of superconducting single-photon detectors

221   0   0.0 ( 0 )
 Added by Jelmer Renema
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally investigate the effect of a magnetic field on photon detection in superconducting single-photon detectors. At low fields, the effect of a magnetic field is through the direct modification of the quasiparticle density of states of the superconductor, and magnetic field and bias current are interchangable, as is expected for homogeneous dirty-limit superconductors. At the field where a first vortex enters the detector, the effect of the magnetic field is reduced, up until the point where the critical current of the detector starts to be determined by flux flow. From this field on, increasing the magnetic field does not alter the detection of photons anymore, whereas it does still change the rate of dark counts. This result points at an intrinsic difference in dark and light counts, and also shows that no enhancement of the intrinsic detection efficiency of a straight SSPD wire is achievable in a magnetic field.

rate research

Read More

Thorough spectral study of the intrinsic single-photon detection efficiency in superconducting TaN and NbN nanowires with different widths shows that the experimental cut-off in the efficiency at near-infrared wavelengths is most likely caused by the local deficiency of Cooper pairs available for current transport. For both materials the reciprocal cut-off wavelength scales with the wire width whereas the scaling factor quantitatively agrees with the hot-spot detection models. Comparison of the experimental data with vortex-assisted detection scenarios shows that these models predict a stronger dependence of the cut-off wavelength on the wire width.
We theoretically study the dependence of the intrinsic detection efficiency (IDE) of superconducting single photon detector on the applied current $I$ and magnetic field $H$. We find that the current, at which the resistive state appears in the superconducting film, depends on the position of the hot spot (region with suppressed superconductivity around the place where the photon has been absorbed) with respect to the edges of the film. It provides inevitable smooth dependence IDE(I) when IDE $sim 0.05-1$ even for homogenous straight superconducting film and in the absence of fluctuations. When IDE $lesssim 0.05$ much sharper current dependence comes from the fluctuation assisted vortex entry to the hot spot located near the edge of the film. We find that weak magnetic field strongly affects IDE when the photon detection is connected with fluctuation assisted vortex entry (IDE$ll 1$) and it weakly affects IDE when the photon detection is connected with the current induced vortex entry to the hot spot or nucleation of the vortex-antivortex pair inside the hot spot (IDE$sim 0.05-1$).
372 - Akito Daido , Yuhei Ikeda , 2021
Stimulated by the recent experiment [F. Ando et al., Nature 584, 373 (2020)], we propose an intrinsic mechanism to cause the superconducting diode effect (SDE). SDE refers to the nonreciprocity of the critical current for the metal-superconductor transition. Among various mechanisms for the critical current, the depairing current is known to be intrinsic to each material and has recently been observed in several superconducting systems. We clarify the temperature scaling of the nonreciprocal depairing current near the critical temperature and point out its significant enhancement at low temperatures. It is also found that the nonreciprocal critical current shows sign reversals upon increasing the magnetic field. These behaviors are understood by the nonreciprocity of the Landau critical momentum and the crossover of the helical superconductivity. The intrinsic SDE unveils the rich phase diagram and functionalities of noncentrosymmetric superconductors.
180 - D. Henrich , L. Rehm , S. Dorner 2012
We investigate the detection efficiency of a spiral layout of a Superconducting Nanowire Single-Photon Detector (SNSPD). The design is less susceptible to the critical current reduction in sharp turns of the nanowire than the conventional meander design. Detector samples with different nanowire width from 300 to 100 nm are patterned from a 4 nm thick NbN film deposited on sapphire substrates. The critical current IC at 4.2 K for spiral, meander, and simple bridge structures is measured and compared. On the 100 nm wide samples, the detection efficiency is measured in the wavelength range 400-1700 nm and the cut-off wavelength of the hot-spot plateau is determined. In the optical range, the spiral detector reaches a detection efficiency of 27.6%, which is ~1.5 times the value of the meander. In the infrared range the detection efficiency is more than doubled.
We investigate the operation of WSi superconducting nanowire single-photon detectors (SNSPDs) at 2.5 K, a temperature which is ~ 70 % of the superconducting transition temperature (TC) of 3.4 K. We demonstrate saturation of the system detection efficiency at 78 +- 2 % with a jitter of 191 ps. We find that the jitter at 2.5 K is limited by the noise of the readout, and can be improved through the use of cryogenic amplifiers. Operation of SNSPDs with high efficiency at temperatures very close to TC appears to be a unique property of amorphous WSi.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا