Do you want to publish a course? Click here

Detection Efficiency of a Spiral-Nanowire Superconducting Single-Photon Detector

214   0   0.0 ( 0 )
 Added by Dagmar Henrich
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the detection efficiency of a spiral layout of a Superconducting Nanowire Single-Photon Detector (SNSPD). The design is less susceptible to the critical current reduction in sharp turns of the nanowire than the conventional meander design. Detector samples with different nanowire width from 300 to 100 nm are patterned from a 4 nm thick NbN film deposited on sapphire substrates. The critical current IC at 4.2 K for spiral, meander, and simple bridge structures is measured and compared. On the 100 nm wide samples, the detection efficiency is measured in the wavelength range 400-1700 nm and the cut-off wavelength of the hot-spot plateau is determined. In the optical range, the spiral detector reaches a detection efficiency of 27.6%, which is ~1.5 times the value of the meander. In the infrared range the detection efficiency is more than doubled.



rate research

Read More

We probe the local detection efficiency in a nanowire superconducting single-photon detector along the cross-section of the wire with a spatial resolution of 10 nm. We experimentally find a strong variation in the local detection efficiency of the device. We demonstrate that this effect explains previously observed variations in NbN detector efficiency as function of device geometry.
We experimentally investigate the detection mechanism in a meandered molybdenum silicide (MoSi) superconducting nanowire single-photon detector by characterising the detection probability as a function of bias current in the wavelength range of 750 to 2050 nm. Contrary to some previous observations on niobium nitride (NbN) or tungsten silicide (WSi) detectors, we find that the energy-current relation is nonlinear in this range. Furthermore, thanks to the presence of a saturated detection efficiency over the whole range of wavelengths, we precisely quantify the shape of the curves. This allows a detailed study of their features, which are indicative of both Fano fluctuations and position-dependent effects.
We theoretically study the dependence of the intrinsic detection efficiency (IDE) of superconducting single photon detector on the applied current $I$ and magnetic field $H$. We find that the current, at which the resistive state appears in the superconducting film, depends on the position of the hot spot (region with suppressed superconductivity around the place where the photon has been absorbed) with respect to the edges of the film. It provides inevitable smooth dependence IDE(I) when IDE $sim 0.05-1$ even for homogenous straight superconducting film and in the absence of fluctuations. When IDE $lesssim 0.05$ much sharper current dependence comes from the fluctuation assisted vortex entry to the hot spot located near the edge of the film. We find that weak magnetic field strongly affects IDE when the photon detection is connected with fluctuation assisted vortex entry (IDE$ll 1$) and it weakly affects IDE when the photon detection is connected with the current induced vortex entry to the hot spot or nucleation of the vortex-antivortex pair inside the hot spot (IDE$sim 0.05-1$).
83 - E. Schmidt , K. Ilin , M. Siegel 2016
We investigated the suitability of AlN as a buffer layer for NbN superconducting nanowire single-photon detectors (SNSPDs) on GaAs. The NbN films with a thickness of 3.3 nm to 20 nm deposited onto GaAs substrates with AlN buffer layer, demonstrate a higher critical temperature, critical current density and lower residual resistivity in comparison to films deposited onto bare substrates. Unfortunately, the thermal coupling of the NbN film to the substrate weakens. SNSPDs made of 4.9 nm thick NbN films on buffered substrates (in comparison to detectors made from NbN films on bare GaAs) demonstrate three orders of magnitude lower dark count rates and about ten times higher detection efficiency at 900 nm being measured at 90% of the critical current. The system timing jitter of SNSPDs on buffered substrates is 72 ps which is 36 ps lower than those on bare substrate. However, a weaker thermal coupling of NbN nanowire to the buffered substrate leads to a latching effect at bias currents > 0.97 IC.
Thorough spectral study of the intrinsic single-photon detection efficiency in superconducting TaN and NbN nanowires with different widths shows that the experimental cut-off in the efficiency at near-infrared wavelengths is most likely caused by the local deficiency of Cooper pairs available for current transport. For both materials the reciprocal cut-off wavelength scales with the wire width whereas the scaling factor quantitatively agrees with the hot-spot detection models. Comparison of the experimental data with vortex-assisted detection scenarios shows that these models predict a stronger dependence of the cut-off wavelength on the wire width.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا