Do you want to publish a course? Click here

The dimension of the range of a transient random walk

138   0   0.0 ( 0 )
 Added by Kunwoo Kim
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We find formulas for the macroscopic Minkowski and Hausdorff dimensions of the range of an arbitrary transient walk in Z^d. This endeavor solves a problem of Barlow and Taylor (1991).



rate research

Read More

We obtain sharp upper and lower bounds for the moderate deviations of the volume of the range of a random walk in dimension five and larger. Our results encompass two regimes: a Gaussian regime for small deviations, and a stretched exponential regime for larger deviations. In the latter regime, we show that conditioned on the moderate deviations event, the walk folds a small part of its range in a ball-like subset. Also, we provide new path properties, in dimension three as well. Besides the key role Newtonian capacity plays in this study, we introduce two original ideas, of general interest, which strengthen the approach developed in cite{AS}.
We obtain estimates for large and moderate deviations for the capacity of the range of a random walk on $mathbb{Z}^d$, in dimension $dge 5$, both in the upward and downward directions. The results are analogous to those we obtained for the volume of the range in two companion papers [AS17, AS19]. Interestingly, the main steps of the strategy we developed for the latter apply in this seemingly different setting, yet the details of the analysis are different
We consider a discrete time simple symmetric random walk on Z^d, d>=1, where the path of the walk is perturbed by inserting deterministic jumps. We show that for any time n and any deterministic jumps that we insert, the expected number of sites visited by the perturbed random walk up to time n is always larger than or equal to that for the unperturbed walk. This intriguing problem arises from the study of a particle among a Poisson system of moving traps with sub-diffusive trap motion. In particular, our result implies a variant of the Pascal principle, which asserts that among all deterministic trajectories the particle can follow, the constant trajectory maximizes the particles survival probability up to any time t>0.
We study the scaling limit of the capacity of the range of a simple random walk on the integer lattice in dimension four. We establish a strong law of large numbers and a central limit theorem with a non-gaussian limit. The asymptotic behaviour is analogous to that found by Le Gall in 86 for the volume of the range in dimension two.
We consider the scaling behavior of the range and $p$-multiple range, that is the number of points visited and the number of points visited exactly $pgeq 1$ times, of simple random walk on ${mathbb Z}^d$, for dimensions $dgeq 2$, up to time of exit from a domain $D_N$ of the form $D_N = ND$ where $Dsubset {mathbb R}^d$, as $Nuparrowinfty$. Recent papers have discussed connections of the range and related statistics with the Gaussian free field, identifying in particular that the distributional scaling limit for the range, in the case $D$ is a cube in $dgeq 3$, is proportional to the exit time of Brownian motion. The purpose of this note is to give a concise, different argument that the scaled range and multiple range, in a general setting in $dgeq 2$, both weakly converge to proportional exit times of Brownian motion from $D$, and that the corresponding limit moments are `polyharmonic, solving a hierarchy of Poisson equations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا