Do you want to publish a course? Click here

HIGHz: A Survey of the Most HI-Massive Galaxies at z~0.2

189   0   0.0 ( 0 )
 Added by Barbara Catinella
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of the HIGHz Arecibo survey, which measured the HI content of 39 galaxies at redshift $z>0.16$ selected from the Sloan Digital Sky Survey. These are all actively star-forming, disk-dominated systems in relatively isolated environments, with stellar and HI masses larger than $10^{10}$ M$_odot$ and redshifts $0.17leq zleq 0.25$. Our sample includes not only the highest-redshift detections of HI emission from individual galaxies to date, but also some of the most HI-massive systems known. Despite being exceptionally large, the HI reservoirs of these galaxies are consistent with what is expected from their ultraviolet and optical properties. This, and the fact that the galaxies lie on the baryonic Tully-Fisher relation, suggests that HIGHz systems are rare, scaled-



rate research

Read More

We present the first results of a targeted survey carried out with the 305 m Arecibo telescope to detect HI-line emission from galaxies at redshift z>0.16. The targets, selected from the Sloan Digital Sky Survey database, are non-interacting disk galaxies in relatively isolated fields. We present here the HI spectra and derived HI parameters for ten objects detected in this pilot program. All are massive disk galaxies in the redshift interval 0.17-0.25 (i.e. 2-3 Gyr look-back time), with HI masses M_HI=3-8 x 10^10 Msun and high gas mass fractions (HI - to - stellar mass ratios ~10-30%). Our results demonstrate the efficacy of exploiting Arecibos large collecting area to measure the HI mass and rotational velocity of galaxies above redshift z=0.2. In particular, this sample includes the highest redshift detections of HI emission from individual galaxies made to date. Extension of this pilot program will allow us to study the HI properties of field galaxies at cosmological distances, thus complementing ongoing radio synthesis observations of cluster samples at z~0.2.
Luminous red galaxies (LRGs) are the most massive galaxies at $zsim 0.5$ and, by selection, have negligible star formation. These objects have halo masses between those of $L_{*}$ galaxies, whose circumgalactic media (CGM) are observed to have large masses of cold gas, and clusters of galaxies, which primarily contain hot gas. Here we report detections of strong and extended metal (CIII 977) and HI lines in the CGM of two LRGs. The CIII lines have equivalent widths of $sim 1.8$ r{A} and $sim 1.2$ r{A} , and velocity spreads of $sim 796$ km s$^{-1}$ and $sim 1245$ km s$^{-1}$, exceeding all such measurements from local $sim L_{*}$ galaxies (maximal CIII equivalent widths $sim 1$ r{A}). The data demonstrate that a subset of halos hosting very massive, quenched galaxies contain significant complexes of cold gas. Possible scenarios to explain our observations include that the LRGs CGM originate from past activity (e.g., star formation or active galactic nuclei driven outflows) or from the CGM of galaxies in overlapping subhalos. We favor the latter scenario, in which the properties of the CGM are more tightly linked to the underlying dark matter halo than properties of the targeted galaxies (e.g., star formation).
We want to investigate whether we can use Lyalpha emission to obtain information on the environment properties and whether Lyalpha emitters show different characteristics as a function of their environment. We estimated local densities in the VANDELS Chandra Deep Field-South (CDFS) and UKIDSS Ultra Deep Survey (UDS) fields, by using a three-dimensional algorithm which works in the RA-dec-redshift space. We selected a sample of 131 Lyalpha-emitting galaxies (EW(Lyalpha)>0 A), unbiased with respect to environmental density, to study their location with respect to the over- or under-dense environment. We identify 13 (proto)cluster candidates in the CDFS and nine in the UDS at 2<z<4, based on photometric and spectroscopic redshifts from VANDELS and from all the available literature. No significant difference is observed in the rest-frame U-V color between field and galaxies located within the identified overdensities. We find that VANDELS Lyalpha emitters (LAEVs) lie preferentially outside of overdense regions as the majority of the galaxies with spectroscopic redshifts from VANDELS. The LAEVs in overdense regions tend to have low Lyalpha equivalent widths and low specific SFRs, and they also tend to be more massive than the LAEVs in the field. Their stacked Lyalpha profile shows a dominant red peak and a hint of a blue peak. Our results show that LAEVs are likely to be influenced by the environment and favour a scenario with outflows of low expansion velocities and high HI column densities for galaxies in overdense regions. An outflow with low expansion velocity could be related to the way galaxies are forming stars in overdense regions; the high HI column density can be a consequence of the gravitational potential of the overdensity. Therefore, Lyalpha-emitting galaxies can provide useful insights on the environment in which they reside.
Relic galaxies are thought to be the progenitors of high-redshift red nuggets that for some reason missed the channels of size growth and evolved passively and undisturbed since the first star formation burst (at $z>2$). These local ultracompact old galaxies are unique laboratories for studying the star formation processes at high redshift and thus the early stage of galaxy formation scenarios. Counterintuitively, theoretical and observational studies indicate that relics are more common in denser environments, where merging events predominate. To verify this scenario, we compared the number counts of a sample of ultracompact massive galaxies (UCMGs) selected within the third data release of the Kilo Degree Survey, that is, systems with sizes $R_{rm e} < 1.5 , rm kpc$ and stellar masses $M_{rm star} > 8 times 10^{10}, rm M_{odot}$, with the number counts of galaxies with the same masses but normal sizes in field and cluster environments. Based on their optical and near-infrared colors, these UCMGs are likely to be mainly old, and hence representative of the relic population. We find that both UCMGs and normal-size galaxies are more abundant in clusters and their relative fraction depends only mildly on the global environment, with denser environments penalizing the survival of relics. Hence, UCMGs (and likely relics overall) are not special because of the environment effect on their nurture, but rather they are just a product of the stochasticity of the merging processes regardless of the global environment in which they live.
Due to the fact that HI mass measurements are not available for large galaxy samples at high redshifts, we apply a photometric estimator of the HI-to-stellar mass ratio (M_HI/M_*) calibrated using a local Universe sample of galaxies to a sample of galaxies at z ~ 1 in the DEEP2 survey. We use these HI mass estimates to calculate HI mass functions (HIMFs) and cosmic HI mass densities (Omega_HI), and to examine the correlation between star formation rate and HI gas content, for galaxies at z ~ 1. We have estimated HI gas masses for ~ 7,000 galaxies in the DEEP2 survey with redshifts in the range 0.75 < z < 1.4 and stellar masses M_* > 10^{10} M_solar, using a combination of the rest-frame ultraviolet-optical colour (NUV - r) and stellar mass density (mu_*) as a way to estimate M_HI/M_*. It is found that the high mass end of high-z HI mass function (HIMF) is quite similar to that of the local HIMF. The lower limit of Omega_HI,limit = 2.1 * 10^{-4} h_70^{-1}, obtained by directly integrating the HI mass of galaxies with M_* > 10^{10} M_solar, confirms that massive star-forming galaxies do not dominate the neutral gas at z ~ 1. We study the evolution of the HI mass to stellar mass ratio from z ~ 1 to today and find a steeper relation between HI gas mass fraction and stellar mass at higher redshifts. Specifically, galaxies with M_* = 10^{11} M_solar at z ~ 1 are found to have 3 - 4 times higher neutral gas fractions than local galaxies, while the increase is as high as 4 - 12 times at M_* = 10^{10} M_solar. The quantity M_HI/SFR exhibits very large scatter, and the scatter increases from a factor of 5 - 7 at z = 0 to factors close to a hundred at z = 1. This implies that there is no relation between HI gas and star formation in high redshift galaxies. The HI gas must be linked to cosmological gas accretion processes at high redshifts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا