Do you want to publish a course? Click here

The far-infrared/radio correlation and radio spectral index of galaxies in the SFR-M* plane up to z 2

142   0   0.0 ( 0 )
 Added by Benjamin Magnelli
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

[Abridged] We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate-stellar masse (i.e. SFR-M*) plane up to z 2. We start from a M*-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR-M* plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR-M*-z bin. The infrared luminosities of our SFR-M*-z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with Herschel. Their radio luminosities and radio spectral indices (i.e. alpha, where Snu nu^-alpha) are estimated using their stacked 1.4GHz and 610MHz flux densities from the VLA and GMRT, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields -GOODS-N/S, ECDFS, and COSMOS- covering a sky area of 2deg^2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M*>10^10Msun and 0<z<2.3. We find that alpha^1.4GHz_610MHz does not evolve significantly with redshift or with the distance of a galaxy with respect to the main sequence (MS) of the SFR-M* plane (i.e. Delta_log(SSFR)_MS=log[SSFR(galaxy)/SSFR_MS(M*,z)]). Instead, star-forming galaxies have a radio spectral index consistent with a canonical value of 0.8, which suggests that their radio spectra are dominated by non-thermal optically thin synchrotron emission. We find that qFIR displays a moderate but statistically significant redshift evolution as qFIR(z)=(2.35+/-0.08)*(1+z)^(-0.12+/-0.04), consistent with some previous literature. Finally, we find no significant correlation between qFIR and Delta_log(SSFR)_MS, though a weak positive trend, as observed in one of our redshift bins, cannot be firmly ruled out using our dataset.



rate research

Read More

We present a study of the radio properties of 870$mu$m-selected submillimetre galaxies (SMGs), observed at high resolution with ALMA in the Extended Chandra Deep Field South. From our initial sample of 76 ALMA SMGs, we detect 52 SMGs at $>3sigma$ significance in VLA 1400MHz imaging, of which 35 are also detected at $>3sigma$ in new 610MHz GMRT imaging. Within this sample of radio-detected SMGs, we measure a median radio spectral index $alpha_{610}^{1400} = -0.79 pm 0.06$, (with inter-quartile range $alpha=[-1.16,-0.56]$) and investigate the far-infrared/radio correlation via the parameter $q_{rm IR}$, the logarithmic ratio of the rest-frame 8-1000$mu$m flux and monochromatic radio flux. Our median $q_{rm IR} = 2.56 pm 0.05$ (inter-quartile range $q_{rm IR}=[2.42,2.78]$) is higher than that typically seen in single-dish 870$mu$m-selected sources ($q_{rm IR} sim 2.4$), which may reflect the fact that our ALMA-based study is not biased to radio-bright counterparts, as previous samples were. Finally, we search for evidence that $q_{rm IR}$ and $alpha$ evolve with age in a co-dependent manner, as predicted by starburst models: the data populate the predicted region of parameter space, with the stellar mass tending to increase along tracks of $q_{rm IR}$ versus $alpha$ in the direction expected, providing the first observational evidence in support of these models.
We investigate the correlation between far-infrared (FIR) and radio luminosities in distant galaxies, a lynchpin of modern astronomy. We use data from the Balloon-borne Large Aperture Submillimetre Telescope (BLAST), Spitzer, the Large Apex BOlometer CamerA (LABOCA), the Very Large Array (VLA) and the Giant Metre-wave Radio Telescope (GMRT) in the Extended Chandra Deep Field South (ECDFS). For a catalogue of BLAST 250-micron-selected galaxies, we re-measure the 70--870-micron flux densities at the positions of their most likely 24-micron counterparts, which have a median [interquartile] redshift of 0.74 [0.25, 1.57]. From these, we determine the monochromatic flux density ratio, q_250 = log_10 (S_250micron / S_1400MHz), and the bolometric equivalent, q_IR. At z ~= 0.6, where our 250-micron filter probes rest-frame 160-micron emission, we find no evolution relative to q_160 for local galaxies. We also stack the FIR and submm images at the positions of 24-micron- and radio-selected galaxies. The difference between q_IR seen for 250-micron- and radio-selected galaxies suggests star formation provides most of the IR luminosity in ~< 100-uJy radio galaxies, but rather less for those in the mJy regime. For the 24-micron sample, the radio spectral index is constant across 0 < z < 3, but q_IR exhibits tentative evidence of a steady decline such that q_IR is proportional to (1+z)^(-0.15 +/- 0.03) - significant evolution, spanning the epoch of galaxy formation, with major implications for techniques that rely on the FIR/radio correlation. We compare with model predictions and speculate that we may be seeing the increase in radio activity that gives rise to the radio background.
We study the radio spectral properties of 2,094 star-forming galaxies (SFGs) by combining our early science data from the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) survey with VLA, GMRT radio data, and rich ancillary data in the COSMOS field. These SFGs are selected at VLA 3GHz, and their flux densities from MeerKAT 1.3GHz and GMRT 325MHz imaging data are extracted using the super-deblending technique. The median radio spectral index is $alpha_{rm 1.3GHz}^{rm 3GHz}=-0.80pm0.01$ without significant variation across the rest-frame frequencies ~1.3-10GHz, indicating radio spectra dominated by synchrotron radiation. On average, the radio spectrum at observer-frame 1.3-3GHz slightly steepens with increasing stellar mass with a linear fitted slope of $beta=-0.08pm0.01$, which could be explained by age-related synchrotron losses. Due to the sensitivity of GMRT 325MHz data, we apply a further flux density cut at 3GHz ($S_{rm 3GHz}ge50,mu$Jy) and obtain a sample of 166 SFGs with measured flux densities at 325MHz, 1.3GHz, and 3GHz. On average, the radio spectrum of SFGs flattens at low frequency with the median spectral indices of $alpha^{rm 1.3GHz}_{rm 325MHz}=-0.59^{+0.02}_{-0.03}$ and $alpha^{rm 3.0GHz}_{rm 1.3GHz}=-0.74^{+0.01}_{-0.02}$. At low frequency, our stacking analyses show that the radio spectrum also slightly steepens with increasing stellar mass. By comparing the far-infrared-radio correlations of SFGs based on different radio spectral indices, we find that adopting $alpha_{rm 1.3GHz}^{rm 3GHz}$ for $k$-corrections will significantly underestimate the infrared-to-radio luminosity ratio ($q_{rm IR}$) for >17% of the SFGs with measured flux density at the three radio frequencies in our sample, because their radio spectra are significantly flatter at low frequency (0.33-1.3GHz).
We present a multi-wavelength analysis of star-forming galaxies in the massive cluster MS0451.6-0305 at z $sim$ 0.54 to shed new light on the evolution of the far-infrared-radio relationship in distant rich clusters. We have derived total infrared luminosities for a spectroscopically confirmed sample of cluster and field galaxies through an empirical relation based on $Spitzer$ MIPS 24 $mu$m photometry. The radio flux densities were measured from deep Very Large Array 1.4 GHz radio continuum observations. We find the ratio of far-infrared to radio luminosity for galaxies in an intermediate redshift cluster to be $q_{rm FIR}$ = 1.80$pm$0.15 with a dispersion of 0.53. Due to the large intrinsic dispersion, we do not find any observable change in this value with either redshift or environment. However, a higher percentage of galaxies in this cluster show an excess in their radio fluxes when compared to low redshift clusters ($27^{+23}_{-13}%$ to $11%$), suggestive of a cluster enhancement of radio-excess sources at this earlier epoch. In addition, the far-infrared-radio relationship for blue galaxies, where $q_{rm FIR}$ = 2.01$pm$0.14 with a dispersion of 0.35, is consistent with the predicted value from the field relationship, although these results are based on a sample from a single cluster.
We present the clustering properties of a complete sample of 968 radio sources detected at 1.4 GHz by the VLA-COSMOS survey with radio fluxes brighter than 0.15 mJy. 92% have redshift determinations from the Laigle et al. (2016) catalogue. Based on their radio-luminosity, these objects have been divided into two populations of 644 AGN and 247 star-forming galaxies. By fixing the slope of the auto-correlation function to gamma=2, we find r_0=11.7^{+1.0}_{-1.1} Mpc for the clustering length of the whole sample, while r_0=11.2^{+2.5}_{-3.3} Mpc and r_0=7.8^{+1.6}_{-2.1} Mpc (r_0=6.8^{+1.4}_{-1.8} Mpc if we restrict our analysis to z<0.9) are respectively obtained for AGN and star-forming galaxies. These values correspond to minimum masses for dark matter haloes of M_min=10^[13.6^{+0.3}_{-0.6}] M_sun for radio-selected AGN and M_min=10^[13.1^{+0.4}_{-1.6}] M_sun for radio-emitting star-forming galaxies (M_min=10^[12.7^{+0.7}_{-2.2}] M_sun for z<0.9). Comparisons with previous works imply an independence of the clustering properties of the AGN population with respect to both radio luminosity and redshift. We also investigate the relationship between dark and luminous matter in both populations. We obtain <M*>/M_halo<~10^{-2.7} for AGN, and <M*>/M_halo<~10^{-2.4} in the case of star-forming galaxies. Furthermore, if we restrict to z<~0.9 star-forming galaxies, we derive <M*>/M_halo<~10^{-2.1}, result which clearly indicates the cosmic process of stellar build-up as one moves towards the more local universe. Comparisons between the observed space density of radio-selected AGN and that of dark matter haloes shows that about one in two haloes is associated with a black hole in its radio-active phase. This suggests that the radio-active phase is a recurrent phenomenon.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا