Do you want to publish a course? Click here

Follow-up observations toward Planck cold clumps with ground-based radio telescopes

151   0   0.0 ( 0 )
 Added by Tie Liu
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The physical and chemical properties of prestellar cores, especially massive ones, are still far from being well understood due to the lack of a large sample. The low dust temperature ($<$14 K) of Planck cold clumps makes them promising candidates for prestellar objects or for sources at the very initial stages of protostellar collapse. We have been conducting a series of observations toward Planck cold clumps (PCCs) with ground-based radio telescopes. In general, when compared with other star forming samples (e.g. infrared dark clouds), PCCs are more quiescent, suggesting that most of them may be in the earliest phase of star formation. However, some PCCs are associated with protostars and molecular outflows, indicating that not all PCCs are in a prestellar phase. We have identified hundreds of starless dense clumps from the mapping survey with the Purple Mountain Observatory (PMO) 13.7-m telescope. Follow-up observations suggest that these dense clumps are ideal targets to search for prestellar objects.



rate research

Read More

The Kepler space mission, successfully launched in March 2009, is providing continuous, high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for asteroseismic studies. The Kepler data do not provide information on the physical parameters, such as effective temperature, surface gravity, metallicity, and vsini, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt Wilson, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observatoire de Haute Provence, and Centro Astronomico Hispano Aleman at Calar Alto. Based on data from the AAVSO International Database.)
A survey of C2H N=1-0 and N2H+ J=1-0 toward Planck Galactic cold clumps (PGCCs) was performed using the Purple Mountain Observatorys 13.7 m telescope. C2H and N2H+ were chosen to study the chemical evolutionary states of PGCCs. Among 121 observed molecular cores associated with PGCCs, 71 and 58 are detected with C2H N=1-0 and N2H+ J=1-0, respectively. The detected lines of most sources can be fitted with a single component with compatible Vlsr and line widths, which confirms that these PGCC cores are very cold (with gas temperatures 9-21 K) and quiescent while still dominanted by turbulence. The ratio between the column densities of C2H and N2H+ (N(C2H)/N(N2H+)) is found to be a good tracer for the evolutionary states of PGCC cores. Gas-grain chemical model can reproduce the decreasing trend of N(C2H)/N(N2H+) as a function of time. The cores with the lowest abundances of N2H+ (X[N2H+] < 10^{-10}) are the youngest, and have nearly constant abundances of C2H. In evolved cores with X[N2H+] ~ 1E-9, abundances of C2H drop quickly as the exhaustion of carbon atoms. Although these PGCC cores are in different evolutionary states, they are all quite young (<5E5 yr) with N(C2H) > N(N2H+). Mapping observations are carried out toward 20 PGCC cores. The PGCC cores in Cepheus have lower N(C2H)/N(N2H+) and larger line widths compared with those in Taurus. This implies that PGCC cores in Taurus are less chemically evolved than those in Cepheus.
The Next Generation Transit Survey (NGTS) is a photometric survey for transiting exoplanets, consisting of twelve identical 0.2-m telescopes. We report a measurement of the transit of HD106315c using a novel observing mode in which multiple NGTS telescopes observed the same target with the aim of increasing the signal-to-noise. Combining the data allows the robust detection of the transit, which has a depth less than 0.1 per cent, rivalling the performance of much larger telescopes. We demonstrate the capability of NGTS to contribute to the follow-up of K2 and TESS discoveries using this observing mode. In particular, NGTS is well-suited to the measurement of shallow transits of bright targets. This is particularly important to improve orbital ephemerides of relatively long-period planets, where only a small number of transits are observed from space.
118 - V. Wakelam , P. Gratier , M. Ruaud 2021
Aims: Interstellar molecules form early in the evolutionary sequence of interstellar material that eventually forms stars and planets. To understand this evolutionary sequence, it is important to characterize the chemical composition of its first steps. Methods: In this paper, we present the result of a 2 and 3 mm survey of five cold clumps identified by the Planck mission. We carried out a radiative transfer analysis on the detected lines in order to put some constraints on the physical conditions within the cores and on the molecular column densities. We also performed chemical models to reproduce the observed abundances in each source using the gas-grain model Nautilus. Results: Twelve molecules were detected: H2CO, CS, SO, NO, HNO, HCO+, HCN, HNC, CN, CCH, CH3OH, and CO. Here, CCH is the only carbon chain we detected in two sources. Radiative transfer analyses of HCN, SO, CS, and CO were performed to constrain the physical conditions of each cloud with limited success. The sources have a density larger than $10^4$ cm$^{-3}$ and a temperature lower than 15 K. The derived species column densities are not very sensitive to the uncertainties in the physical conditions, within a factor of 2. The different sources seem to present significant chemical differences with species abundances spreading over one order of magnitude. The chemical composition of these clumps is poorer than the one of Taurus Molecular Cloud 1 Cyanopolyyne Peak (TMC-1 CP) cold core. Our chemical model reproduces the observational abundances and upper limits for 79 to 83% of the species in our sources. The best times for our sources seem to be smaller than those of TMC-1, indicating that our sources may be less evolved and explaining the smaller abundances and the numerous non-detections. Also, CS and HCN are always overestimated by our models.
We have discovered 21 Rotating Radio Transients (RRATs) in data from the Green Bank Telescope (GBT) 350-MHz Drift-scan and the Green Bank North Celestial Cap pulsar surveys using a new candidate sifting algorithm. RRATs are pulsars with sporadic emission that are detected through their bright single pulses rather than Fourier domain searches. We have developed {tt RRATtrap}, a single-pulse sifting algorithm that can be integrated into pulsar survey data analysis pipelines in order to find RRATs and Fast Radio Bursts. We have conducted follow-up observations of our newly discovered sources at several radio frequencies using the GBT and Low Frequency Array (LOFAR), yielding improved positions and measurements of their periods, dispersion measures, and burst rates, as well as phase-coherent timing solutions for four of them. The new RRATs have dispersion measures (DMs) ranging from 15 to 97 pc cm$^{-3}$, periods of 240 ms to 3.4 s, and estimated burst rates of 20 to 400 pulses hr$^{-1}$ at 350 MHz. We use this new sample of RRATs to perform statistical comparisons between RRATs and canonical pulsars in order to shed light on the relationship between the two populations. We find that the DM and spatial distributions of the RRATs agree with those of the pulsars found in the same survey. We find evidence that slower pulsars (i.e. $P>200$ ms) are preferentially more likely to emit bright single pulses than are faster pulsars ($P<200$ ms), although this conclusion is tentative. Our results are consistent with the proposed link between RRATs, transient pulsars, and canonical pulsars as sources in various parts of the pulse activity spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا