No Arabic abstract
The Kepler space mission, successfully launched in March 2009, is providing continuous, high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for asteroseismic studies. The Kepler data do not provide information on the physical parameters, such as effective temperature, surface gravity, metallicity, and vsini, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt Wilson, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observatoire de Haute Provence, and Centro Astronomico Hispano Aleman at Calar Alto. Based on data from the AAVSO International Database.)
We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising Kepler pulsators. So far, 36 different instruments at 31 telescopes on 23 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt Wilson, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observatoire de Haute Provence, and Centro Astronomico Hispano Aleman at Calar Alto. Based on data from the AAVSO International Database.)
We present the first preliminary results on the analysis of ground-based time series of the {gamma} Dor star KIC 6462033 (TYC 3144-646-1, V = 10.83, P = 0.69686 d) as well as Kepler photometry in order to study pulsational behaviour in this star.{gamma} Dor variables, which exhibit g-mode pulsations, are promising asteroseismic targets to understand their rich complexity of pulsational characteristics in detail. In order to achieve this goal, intensive and numerous multicolour and high resolution spectroscopic observations are also required, to complete space-based data aimed at the determination of their physical parameters.
We present results of our 5-years-long program of ground-based spectroscopic and photometric observations of individual Kepler asteroseismic targets and the open clusters NGC6866 and NGC6811 from the Kepler field of view.We determined the effective temperature, surface gravity, metallicity, the projected rotational velocity and the radial velocity of 119 Kepler asteroseismic targets for which we acquired high-resolution spectra. For many of these stars the derived atmospheric parameters agree with Teff, log g, and [Fe/H] from the Kepler Input Catalog (KIC) to within their error bars. Only for stars hotter than 7000K we notice significant differences between the effective temperature derived from spectroscopy and Teff given in the KIC. For 19 stars which we observed photoelectrically, we measured the interstellar reddening and we found it to be negligible. Finally, our discovery of the delta Sct and gamma Dor pulsating stars in the open cluster NGC6866 allowed us to discuss the frequency of the occurrence of gamma Dor stars in the open clusters of different age and metallicity and show that there are no correlations between these parameters.
To optimise the science results of the asteroseismic part of the CoRoT satellite mission a complementary simultaneous ground-based observational campaign is organised for selected CoRoT targets. The observations include both high-resolution spectroscopic and multi-colour photometric data. We present the preliminary results of the analysis of the ground-based observations of three targets. A line-profile analysis of 216 high-resolution FEROS spectra of the delta Sct star HD 50844 reveals more than ten pulsation frequencies in the frequency range 5-18 c/d, including possibly one radial fundamental mode (6.92 c/d). Based on more than 600 multi-colour photometric datapoints of the beta Cep star HD180642, spanning about three years and obtained with different telescopes and different instruments, we confirm the presence of a dominant radial mode nu1=5.48695 c/d, and detect also its first two harmonics. We find evidence for a second mode nu2=0.3017 c/d, possibly a g-mode, and indications for two more frequencies in the 7-8 c/d domain. From Stromgren photometry we find evidence for the hybrid delta Sct/gamma Dor character of the F0 star HD 44195, as frequencies near 3 c/d and 21 c/d are detected simultaneously in the different filters.
The physical and chemical properties of prestellar cores, especially massive ones, are still far from being well understood due to the lack of a large sample. The low dust temperature ($<$14 K) of Planck cold clumps makes them promising candidates for prestellar objects or for sources at the very initial stages of protostellar collapse. We have been conducting a series of observations toward Planck cold clumps (PCCs) with ground-based radio telescopes. In general, when compared with other star forming samples (e.g. infrared dark clouds), PCCs are more quiescent, suggesting that most of them may be in the earliest phase of star formation. However, some PCCs are associated with protostars and molecular outflows, indicating that not all PCCs are in a prestellar phase. We have identified hundreds of starless dense clumps from the mapping survey with the Purple Mountain Observatory (PMO) 13.7-m telescope. Follow-up observations suggest that these dense clumps are ideal targets to search for prestellar objects.