Do you want to publish a course? Click here

Density Functional Model for Nondynamic and Strong Correlation

94   0   0.0 ( 0 )
 Added by Jing Kong
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A single-term density functional model for nondynamic and strong correlation is presented, based on single-determinant Kohn-Sham density functional theory. It is derived from modeling the adiabatic connection and contains only two nonlinear empirical parameters. Preliminary tests show that the model recovers majority of nondynamic correlation during a molecular dissociation and at the same time performs reasonably for atomization energies. It demonstrates the feasibility of developing DFT functionals for nondynamic and strong correlation within the single-determinant KS scheme.



rate research

Read More

126 - Julien Toulouse 2021
In this chapter, we provide a review of ground-state Kohn-Sham density-functional theory of electronic systems and some of its extensions, we present exact expressions and constraints for the exchange and correlation density functionals, and we discuss the main families of approximations for the exchange-correlation energy: semilocal approximations, single-determinant hybrid approximations, multideterminant hybrid approximations, dispersion-corrected approximations, as well as orbital-dependent exchange-correlation density functionals. The chapter aims at providing both a consistent birds-eye view of the field and a detailed description of some of the most used approximations. It is intended to be readable by chemists/physicists and applied mathematicians.
We review and expand on our work to impose constraints on the effective Kohn Sham (KS) potential of local and semi-local density functional approximations. In this work, we relax a previously imposed positivity constraint, which increased the computational cost and we find that it is safe to do so, except in systems with very few electrons. The constrained minimisation leads invariably to the solution of an optimised effective potential (OEP) equation in order to determine the KS potential. We review briefly our previous work on this problem and demonstrate with numerous examples that despite well-known mathematical issues of the OEP with finite basis sets, our OEP equations are well behaved. We demonstrate that constraining the screening charge of the Hartree, exchange and correlation potential not only corrects its asymptotic behaviour but also allows the exchange and correlation potential to exhibit nonzero derivative discontinuity, a feature of the exact KS potential that is necessary for the accurate prediction of band-gaps in solids but very hard to capture with semi-local approximations.
94 - Anthony Ferte 2019
We introduce an approximation to the short-range correlation energy functional with multide-terminantal reference involved in a variant of range-separated density-functional theory. This approximation is a local functional of the density, the density gradient, and the on-top pair density, which locally interpolates between the standard Perdew-Burke-Ernzerhof correlation functional at vanishing range-separation parameter and the known exact asymptotic expansion at large range-separation parameter. When combined with (selected) configuration-interaction calculations for the long-range wave function, this approximation gives accurate dissociation energy curves of the H2, Li2, and Be2 molecules, and thus appears as a promising way to accurately account for static correlation in range-separated density-functional theory.
An active space variational calculation of the 2-electron reduced density matrix (2-RDM) is derived and implemented where the active orbitals are correlated within the pair approximation. The pair approximation considers only doubly occupied configurations of the wavefunction which enables the calculation of the 2-RDM at a computational cost of $mathcal{O}(r^3)$. Calculations were performed both with the pair active space configuration interaction (PASCI) method and the pair active space self consistent field (PASSCF) method. The latter includes a mixing of the active and inactive orbitals through unitary transformations. The active-space pair 2-RDM method is applied to the nitrogen molecule, the p-benzyne diradical, a newly synthesized BisCobalt complex, and the nitrogenase cofactor FeMoco. The FeMoco molecule is treated in a [120,120] active space. Fractional occupations are recovered in each of these systems, indicating the detection and recovery of strong electron correlation.
We present the self-consistent implementation of current-dependent (hybrid) meta generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn--Sham current density-functional theory (KS-CDFT). A unique feature of the non-perturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 a.u. ($sim 235000$T) in strength. CDFT functionals based on the TPSS and B98 forms are investigated and their performance is assessed by comparison with accurate CCSD(T) data. In the weak field regime magnetic properties such as magnetizabilities and NMR shielding constants show modest but systematic improvements over GGA functionals. However, in strong field regime the mGGA based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity these forms are found to be numerically stable and their accuracy at high field suggests the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا