Do you want to publish a course? Click here

Spin-based Mach-Zehnder interferometry in topological insulator p-n junctions

122   0   0.0 ( 0 )
 Added by Fernando de Juan
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A p-n junction, an interface between two regions of a material populated with carriers of opposite charge, is a basic building block of solid state electronic devices. From the fundamental physics perspective, it often serves as a tool to reveal the unconventional transport behavior of novel materials. In this work, we show that a p-n junction made from a three dimensional topological insulator (3DTI) in a magnetic field realizes an electronic Mach-Zehnder interferometer with virtually perfect visibility. This is owed to the confinement of the topological Dirac fermion state to a closed two-dimensional surface, which offers the unprecedented possibility of utilizing external fields to design networks of chiral modes wrapping around the bulk in closed trajectories, without the need of complex constrictions or etching. Remarkably, this junction also acts as a spin filter, where the path of the particle is tied to the direction of spin propagation. It therefore constitutes a novel and highly tunable spintronic device where spin polarized input and output currents are naturally formed and could be accessed and manipulated seperately.



rate research

Read More

Electrical transport in three dimensional topological insulators(TIs) occurs through spin-momentum locked topological surface states that enclose an insulating bulk. In the presence of a magnetic field, surface states get quantized into Landau levels giving rise to chiral edge states that are naturally spin-polarized due to spin momentum locking. It has been proposed that p-n junctions of TIs in the quantum Hall regime can manifest unique spin dependent effects, apart from forming basic building blocks for highly functional spintronic devices. Here, for the first time we study electrostatically defined n-p-n junctions of bulk insulating topological insulator BiSbTe$_{1.25}$Se$_{1.75}$ in the quantum Hall regime. We reveal the remarkable quantization of longitudinal resistance into plateaus at 3/2 and 2/3 h/e$^2$, apart from several partially developed fractional plateaus. Theoretical modeling combining the electrostatics of the dual gated TI n-p-n junction with Landauer Buttiker formalism for transport through a network of chiral edge states explains our experimental data, while revealing remarkable differences from p-n junctions of graphene and two-dimensional electron gas systems. Our work not only opens up a route towards exotic spintronic devices but also provides a test bed for investigating the unique signatures of quantum Hall effects in topological insulators.
Single-Dirac-cone topological insulators (TI) are the first experimentally discovered class of three dimensional topologically ordered electronic systems, and feature robust, massless spin-helical conducting surface states that appear at any interface between a topological insulator and normal matter that lacks the topological insulator ordering. This topologically defined surface environment has been theoretically identified as a promising platform for observing a wide range of new physical phenomena, and possesses ideal properties for advanced electronics such as spin-polarized conductivity and suppressed scattering. A key missing step in enabling these applications is to understand how topologically ordered electrons respond to the interfaces and surface structures that constitute a device. Here we explore this question by using the surface deposition of cathode (Cu/In/Fe) and anode materials (NO$_2$) and control of bulk doping in Bi$_2$Se$_3$ from P-type to N-type charge transport regimes to generate a range of topological insulator interface scenarios that are fundamental to device development. The interplay of conventional semiconductor junction physics and three dimensional topological electronic order is observed to generate novel junction behaviors that go beyond the doped-insulator paradigm of conventional semiconductor devices and greatly alter the known spin-orbit interface phenomenon of Rashba splitting. Our measurements for the first time reveal new classes of diode-like configurations that can create a gap in the interface electron density near a topological Dirac point and systematically modify the topological surface state Dirac velocity, allowing far reaching control of spin-textured helical Dirac electrons inside the interface and creating advantages for TI superconductors as a Majorana fermion platform over spin-orbit semiconductors.
Electron-electron interactions in topological p-n junctions consisting of vertically stacked topological insulators are investigated. n-type Bi2Te3 and p-type Sb2Te3 of varying relative thicknesses are deposited using molecular beam epitaxy and their electronic properties measured using low-temperature transport. The screening factor is observed to decrease with increasing sample thickness, a finding which is corroborated by semi-classical Boltzmann theory. The number of two-dimensional states determined from electron-electron interactions is larger compared to the number obtained from weak-antilocalization, in line with earlier experiments using single layers.
We study a model of a $p$-$n$ junction in single-layer graphene in the presence of a perpendicular magnetic field and spin-orbit interactions. By solving the relevant quantum-mechanical problem for a potential step, we determine the exact spectrum of spin-resolved dispersive Landau levels. Close to zero energy, we find a pair of linearly dispersing zero modes, which possess a wave-vector-dependent spin polarization and can be regarded as quantum analogous of spinful snake states. We show that the Rashba spin-orbit interaction, in particular, produces a wave vector shift between the dispersions of these modes with observable interference effects. These effects can in principle provide a way to detect the presence of Rashba spin-orbit interaction and measure its strength. Our results suggest that a graphene $p$-$n$ junction in the presence of strong spin-orbit interaction could be used as a building block in a spin field-effect transistor.
We compute the exact single-particle time-resolved dynamics of electronic Mach-Zehnder interferometers based on Landau edge-states transport, and assess the effect of the spatial localization of carriers on the interference pattern. The exact carrier dynamics is obtained by solving numerically the time-dependent Schroedinger equation with a suitable 2D potential profile reproducing the interferometer design. An external magnetic field, driving the system to the quantum Hall regime with filling factor one, is included. The injected carriers are represented by a superposition of edge states and their interference pattern reproduces the results of Y.Ji et al.[Nature 422, 415 (2003)]. By tuning the system towards different regimes, we find two additional features in the transmission spectra, both related to carrier localization, namely a damping of the Aharonov-Bohm oscillations with increasing difference in the arms length, and an increased mean transmission that we trace to the energy-dependent transmittance of quantum point contacts. Finally, we present an analytical model, also accounting for the finite spatial dispersion of the carriers, able to reproduce the above effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا