No Arabic abstract
We construct a Josephson junction in non-relativistic case with a Lifshitz geometry as the dual gravity. We investigate the effect of the Lifshitz scaling in comparison with its relativistic counterpart. The standard sinusoidal relation between the current and the phase difference is found for various Lifshitz scalings characterised by the dynamical critical exponent. We also find the exponential decreasing relation between the condensate of the scalar operator within the barrier at zero current and the width of the weak link, as well as the relation between the critical current and the width. Nevertheless, the coherence lengths obtained from two exponential decreasing relations generically have discrepancies for non-relativistic dual.
We study generic types of holographic matter residing in Lifshitz invariant defect field theory as modeled by adding probe D-branes in the bulk black hole spacetime characterized by dynamical exponent $z$ and with hyperscaling violation exponent $theta$. Our main focus will be on the collective excitations of the dense matter in the presence of an external magnetic field. Constraining the defect field theory to 2+1 dimensions, we will also allow the gauge fields become dynamical and study the properties of a strongly coupled anyonic fluid. We will deduce the universal properties of holographic matter and find that the Einstein relation always holds.
We study the holographic superconductor-normal metal-superconductor (SNS) Josephon junction in the massive gravity. In the homogeneous case of the chemical potential, we find that the graviton mass will make the normal metal-superconductor phase transition harder to take place. In the holographic model of Josephson junction, it is found that the maximal tunneling current will decrease according to the graviton mass. Besides, the coherence length of the junction decreases as well with respect to the graviton mass. If one interprets the graviton mass as the effect of momentum dissipation in the boundary field theory, it indicates that the stronger the momentum dissipation is, the smaller the coherence length is.
We present a general algorithm for constructing the holographic dictionary for Lifshitz and hyperscaling violating Lifshitz backgrounds for any value of the dynamical exponent $z$ and any value of the hyperscaling violation parameter $theta$ compatible with the null energy condition. The objective of the algorithm is the construction of the general asymptotic solution of the radial Hamilton-Jacobi equation subject to the desired boundary conditions, from which the full dictionary can be subsequently derived. Contrary to the relativistic case, we find that a fully covariant construction of the asymptotic solution for running non-relativistic theories necessitates an expansion in the eigenfunctions of two commuting operators instead of one. This provides a covariant but non-relativistic grading of the expansion, according to the number of time derivatives.
M-theory on $AdS_7 times S^4$ admits a description where the $AdS_7$ factor is constructed as a timelike Hopf fibration over a non-compact three dimensional complex projective space $tilde{mathbb{CP}}^3$. We consider the worldvolume theory for M5-branes at a fixed $tilde{mathbb{CP}}^3$ radius which, after reduction along the timelike fibre, is given by an $Omega$-deformed Yang-Mills theory with eight supercharges. Taking the radius to infinity then induces a classical RG flow. We construct the fixed point action which has an enhanced 24 supercharges and which can be understood as the $(2,0)$ theory of M5-branes on flat space reduced along a compact null Killing direction.
Quantum theory can be formulated with certain non-Hermitian Hamiltonians. An anti-linear involution, denoted by PT, is a symmetry of such Hamiltonians. In the PT-symmetric regime the non-Hermitian Hamiltonian is related to a Hermitian one by a Hermitian similarity transformation. We extend the concept of non-Hermitian quantum theory to gauge-gravity duality. Non-Hermiticity is introduced via boundary conditions in asymptotically AdS spacetimes. At zero temperature the PT phase transition is identified as the point at which the solutions cease to be real. Surprisingly for solutions containing black holes real solutions can be found well outside the quasi-Hermitian regime. These backgrounds are however unstable to fluctuations which establishes the persistence of the holographic dual of the PT phase transition at finite temperature.