Do you want to publish a course? Click here

Antipodes and involutions

193   0   0.0 ( 0 )
 Added by Bruce E. Sagan
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

If H is a connected, graded Hopf algebra, then Takeuchis formula can be used to compute its antipode. However, there is usually massive cancellation in the result. We show how sign-reversing involutions can sometimes be used to obtain cancellation-free formulas. We apply this idea to nine different examples. We rederive known formulas for the antipodes in the Hopf algebra of polynomials, the shuffle Hopf algebra, the Hopf algebra of quasisymmertic functions in both the monomial and fundamental bases, the Hopf algebra of multi-quasisymmetric functions in the fundamental basis, and the incidence Hopf algebra of graphs. We also find cancellation-free expressions for particular values of the antipode in the immaculate basis for the noncommutative symmetric functions as well as the Malvenuto-Reutenauer and Porier-Reutenauer Hopf algebras, some of which are the first of their kind. We include various conjectures and suggestions for future research.



rate research

Read More

The group of almost Riordan arrays contains the group of Riordan arrays as a subgroup. In this note, we exhibit examples of pseudo-involutions, involutions and quasi-involutions in the group of almost Riordan arrays.
We investigate the natural codings of linear involutions. We deduce from the geometric representation of linear involutions as Poincare maps of measured foliations a suitable definition of return words which yields that the set of first return words to a given word is a symmetric basis of the free group on the underlying alphabet $A$. The set of first return words with respect to a subgroup of finite index $G$ of the free group on $A$ is also proved to be a symmetric basis of $G$.
In this note, we study the mean length of the longest increasing subsequence of a uniformly sampled involution that avoids the pattern $3412$ and another pattern.
200 - Paolo Saracco 2019
We prove that a quasi-bialgebra admits a preantipode if and only if the associated free quasi-Hopf bimodule functor is Frobenius, if and only if the relative (opmonoidal) monad is a Hopf monad. The same results hold in particular for a bialgebra, tightening the connection between Hopf and Frobenius properties.
125 - Michael Lugo 2009
In this article we consider the cycle structure of compositions of pairs of involutions in the symmetric group S_n chosen uniformly at random. These can be modeled as modified 2-regular graphs, giving rise to exponential generating functions. A composition of two random involutions in S_n typically has about n^(1/2) cycles, and the cycles are characteristically of length n^(1/2). Compositions of two random fixed-point-free involutions, on the other hand, typically have about log n cycles and are closely related to permutations with all cycle lengths even. The number of factorizations of a random permutation into two involutions appears to be asymptotically lognormally distributed, which we prove for a closely related probabilistic model. This study is motivated by the observation that the number of involutions in [n] is (n!)^(1/2) times a subexponential factor; more generally the number of permutations with all cycle lengths in a finite set S is n!^(1-1/m) times a subexponential factor, and the typical number of k-cycles is nearly n^(k/m)/k. Connections to pattern avoidance in involutions are also considered.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا