Do you want to publish a course? Click here

Cloud Radio-Multistatic Radar: Joint Optimization of Code Vector and Backhaul Quantization

121   0   0.0 ( 0 )
 Added by Shahrouz Khalili
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

A multistatic radar set-up is considered in which distributed receive antennas are connected to a Fusion Center (FC) via limited-capacity backhaul links. Similar to cloud radio access networks in communications, the receive antennas quantize the received baseband signal before transmitting it to the FC. The problem of maximizing the detection performance at the FC jointly over the code vector used by the transmitting antenna and over the statistics of the noise introduced by backhaul quantization is investigated. Specifically, adopting the information-theoretic criterion of the Bhattacharyya distance to evaluate the detection performance at the FC and information-theoretic measures of the quantization rate, the problem at hand is addressed via a Block Coordinate Descent (BCD) method coupled with Majorization-Minimization (MM). Numerical results demonstrate the advantages of the proposed joint optimization approach over more conventional solutions that perform separate optimization.



rate research

Read More

Cooperative beamforming across access points (APs) and fronthaul quantization strategies are essential for cloud radio access network (C-RAN) systems. The nonconvexity of the C-RAN optimization problems, which is stemmed from per-AP power and fronthaul capacity constraints, requires high computational complexity for executing iterative algorithms. To resolve this issue, we investigate a deep learning approach where the optimization module is replaced with a well-trained deep neural network (DNN). An efficient learning solution is proposed which constructs a DNN to produce a low-dimensional representation of optimal beamforming and quantization strategies. Numerical results validate the advantages of the proposed learning solution.
In order to further exploit the potential of joint multi-antenna radar-communication (RadCom) system, we propose two transmission techniques respectively based on separated and shared antenna deployments. Both techniques are designed to maximize the weighted sum rate (WSR) and the probing power at targets location under average power constraints at the antennas such that the system can simultaneously communicate with downlink users and detect the target within the same frequency band. Based on a Weighted Minimized Mean Square Errors (WMMSE) method, the separated deployment transmission is designed via semidefinite programming (SDP) while the shared deployment problem is solved by majorization-minimization (MM) algorithm. Numerical results show that the shared deployment outperforms the separated deployment in radar beamforming. The tradeoffs between WSR and probing power at target are compared among both proposed transmissions and two practically simpler dual-function implementations i.e., time division and frequency division. Results show that although the separated deployment enables spectrum sharing, it experiences a performance loss compared with frequency division, while the shared deployment outperforms both and surpasses time division in certain conditions.
We address the problem of uplink co-operative reception with constraints on both backhaul bandwidth and the receiver aperture, or number of antenna signals that can be processed. The problem is cast as a network utility (weighted sum rate) maximization subject to computational complexity and architectural bandwidth sharing constraints. We show that a relaxed version of the problem is convex, and can be solved via a dual-decomposition. The proposed solution is distributed in that each cell broadcasts a set of {em demand prices} based on the data sharing requests they receive. Given the demand prices, the algorithm determines an antenna/cell ordering and antenna-selection for each scheduled user in a cell. This algorithm, referred to as {em LiquidMAAS}, iterates between the preceding two steps. Simulations of realistic network scenarios show that the algorithm exhibits fast convergence even for systems with large number of cells.
Due to spectrum scarcity, the coexistence of radar and wireless communication has gained substantial research interest recently. Among many scenarios, the heterogeneouslydistributed joint radar-communication system is promising due to its flexibility and compatibility of existing architectures. In this paper, we focus on a heterogeneous radar and communication network (HRCN), which consists of various generic radars for multiple target tracking (MTT) and wireless communications for multiple users. We aim to improve the MTT performance and maintain good throughput levels for communication users by a well-designed resource allocation. The problem is formulated as a Bayesian Cramer-Rao bound (CRB) based minimization subjecting to resource budgets and throughput constraints. The formulated nonconvex problem is solved based on an alternating descent-ascent approach. Numerical results demonstrate the efficacy of the proposed allocation scheme for this heterogeneous network.
Dual-Functional Radar-Communication (DFRC) system is an essential and promising technique for beyond 5G. In this work, we propose a powerful and unified multi-antenna DFRC transmission framework, where an additional radar sequence is transmitted apart from communication streams to enhance radar beampattern matching capability, and Rate-Splitting Multiple Access (RSMA) is adopted to better manage the interference. RSMA relies on multi-antenna Rate-Splitting (RS) with Successive Interference Cancellation (SIC) receivers, and the split and encoding of messages into common and private streams. We design the message split and the precoders of the radar sequence and communication streams to jointly maximize the Weighted Sum Rate (WSR) and minimize the radar beampattern approximation Mean Square Error (MSE) subject to the per antenna power constraint. An iterative algorithm based on Alternating Direction Method of Multipliers (ADMM) is developed to solve the problem. Numerical results first show that RSMA-assisted DFRC achieves a better tradeoff between WSR and beampattern approximation than Space-Division Multiple Access (SDMA)-assisted DFRC with or without radar sequence, and other simpler radar-communication strategies using orthogonal resources. We also show that the RSMA-assisted DFRC frameworks with and without radar sequence achieve the same tradeoff performance. This is because that the common stream is better exploited in the proposed framework. The common stream of RSMA fulfils the triple function of managing interference among communication users, managing interference between communication and radar, and beampattern approximation. Therefore, by enabling RSMA in DFRC, the system performance is enhanced while the system architecture is simplified since there is no need to use additional radar sequence and SIC. We conclude that RSMA is a more powerful multiple access for DFRC.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا