No Arabic abstract
NGC1266 is a nearby lenticular galaxy that harbors a massive outflow of molecular gas powered by the mechanical energy of an active galactic nucleus (AGN). It has been speculated that such outflows hinder star formation (SF) in their host galaxies, providing a form of feedback to the process of galaxy formation. Previous studies, however, indicated that only jets from extremely rare, high power quasars or radio galaxies could impart significant feedback on their hosts. Here we present detailed observations of the gas and dust continuum of NGC1266 at millimeter wavelengths. Our observations show that molecular gas is being driven out of the nuclear region at $dot{M}_{rm out} approx 110 M_odot$ yr$^{-1}$, of which the vast majority cannot escape the nucleus. Only 2 $M_odot$ yr$^{-1}$ is actually capable of escaping the galaxy. Most of the molecular gas that remains is very inefficient at forming stars. The far-infrared emission is dominated by an ultra-compact ($lesssim50$pc) source that could either be powered by an AGN or by an ultra-compact starburst. The ratio of the SF surface density ($Sigma_{rm SFR}$) to the gas surface density ($Sigma_{rm H_2}$) indicates that SF is suppressed by a factor of $approx 50$ compared to normal star-forming galaxies if all gas is forming stars, and $approx$150 for the outskirt (98%) dense molecular gas if the central region is is powered by an ultra-compact starburst. The AGN-driven bulk outflow could account for this extreme suppression by hindering the fragmentation and gravitational collapse necessary to form stars through a process of turbulent injection. This result suggests that even relatively common, low-power AGNs are able to alter the evolution of their host galaxies as their black holes grow onto the M-$sigma$ relation.
Observations of the $gamma$-ray emission around star clusters, isolated supernova remnants, and pulsar wind nebulae indicate that the cosmic-ray (CR) diffusion coefficient near acceleration sites can be suppressed by a large factor compared to the Galaxy average. We explore the effects of such local suppression of CR diffusion on galaxy evolution using simulations of isolated disk galaxies with regular and high gas fractions. Our results show that while CR propagation with constant diffusivity can make gaseous disks more stable by increasing the midplane pressure, large-scale CR pressure gradients cannot prevent local fragmentation when the disk is unstable. In contrast, when CR diffusivity is suppressed in star-forming regions, the accumulation of CRs in these regions results in strong local pressure gradients that prevent the formation of massive gaseous clumps. As a result, the distribution of dense gas and star formation changes qualitatively: a globally unstable gaseous disk does not violently fragment into massive star-forming clumps but maintains a regular grand-design spiral structure. This effect regulates star formation and disk structure and is qualitatively different from and complementary to the global role of CRs in vertical hydrostatic support of the gaseous disk and in driving galactic winds.
The under-abundance of very massive galaxies in the universe is frequently attributed to the effect of galactic winds. Although ionized galactic winds are readily observable most of the expelled mass is likely in cooler atomic and molecular phases. Expanding molecular shells observed in starburst systems such as NGC 253 and M 82 may facilitate the entrainment of molecular gas in the wind. While shell properties are well constrained, determining the amount of outflowing gas emerging from such shells and the connection between this gas and the ionized wind requires spatial resolution <100 pc coupled with sensitivity to a wide range of spatial scales, hitherto not available. Here we report observations of NGC 253, a nearby starburst galaxy (D~3.4 Mpc) known to possess a wind, which trace the cool molecular wind at 50 pc resolution. At this resolution the extraplanar molecular gas closely tracks the H{alpha} filaments, and it appears connected to molecular expanding shells located in the starburst region. These observations allow us to directly measure the molecular outflow rate to be > 3 Msun/yr and likely ~9 Msun/yr. This implies a ratio of mass-outflow rate to star formation rate of at least {eta}~1-3, establishing the importance of the starburst-driven wind in limiting the star formation activity and the final stellar content.
We present multi-wavelength global star formation rate (SFR) estimates for 326 galaxies from the Star Formation Reference Survey (SFRS) in order to determine the mutual scatter and range of validity of different indicators. The widely used empirical SFR recipes based on 1.4 GHz continuum, 8.0 $mu$m polycyclic aromatic hydrocarbons (PAH), and a combination of far-infrared (FIR) plus ultraviolet (UV) emission are mutually consistent with scatter of $raise{-0.8ex}stackrel{textstyle <}{sim }$0.3 dex. The scatter is even smaller, $raise{-0.8ex}stackrel{textstyle <}{sim }$0.24 dex, in the intermediate luminosity range 9.3<log(L(60 $mu$m/L$_odot$)<10.7. The data prefer a non-linear relation between 1.4 GHz luminosity and other SFR measures. PAH luminosity underestimates SFR for galaxies with strong UV emission. A bolometric extinction correction to far-ultraviolet luminosity yields SFR within 0.2 dex of the total SFR estimate, but extinction corrections based on UV spectral slope or nuclear Balmer decrement give SFRs that may differ from the total SFR by up to 2 dex. However, for the minority of galaxies with UV luminosity ${>}5times10^9$ L$_{odot}$ or with implied far-UV extinction <1 mag, the UV spectral slope gives extinction corrections with 0.22~dex uncertainty.
The full stellar population of NGC 6334, one of the most spectacular regions of massive star formation in the nearby Galaxy, have not been well-sampled in past studies. We analyze here a mosaic of two Chandra X-ray Observatory images of the region using sensitive data analysis methods, giving a list of 1607 faint X-ray sources with arcsecond positions and approximate line-of-sight absorption. About 95 percent of these are expected to be cluster members, most lower mass pre-main sequence stars. Extrapolating to low X-ray levels, the total stellar population is estimated to be 20-30,000 pre-main sequence stars. The X-ray sources show a complicated spatial pattern with about 10 distinct star clusters. The heavily-obscured clusters are mostly associated with previously known far-infrared sources and radio HII regions. The lightly-obscured clusters are mostly newly identified in the X-ray images. Dozens of likely OB stars are found, both in clusters and dispersed throughout the region, suggesting that star formation in the complex has proceeded over millions of years. A number of extraordinarily heavily absorbed X-ray sources are associated with the active regions of star formation.
To understand star formation in galaxies, we investigate the star formation rate (SFR) surface density ($Sigma_{rm SFR}$) profiles for galaxies, based on a well-defined sample of 976 star-forming MaNGA galaxies. We find that the typical $Sigma_{rm SFR}$ profiles within 1.5Re of normal SF galaxies can be well described by an exponential function for different stellar mass intervals, while the sSFR profile shows positive gradients, especially for more massive SF galaxies. This is due to the more pronounced central cores or bulges rather than the onset of a `quenching process. While galaxies that lie significantly above (or below) the star formation main sequence (SFMS) show overall an elevation (or suppression) of $Sigma_{rm SFR}$ at all radii, this central elevation (or suppression) is more pronounced in more massive galaxies. The degree of central enhancement and suppression is quite symmetric, suggesting that both the elevation and suppression of star formation are following the same physical processes. Furthermore, we find that the dispersion in $Sigma_{rm SFR}$ within and across the population is found to be tightly correlated with the inferred gas depletion time, whether based on the stellar surface mass density or the orbital dynamical time. This suggests that we are seeing the response of a simple gas-regulator system to variations in the accretion rate. This is explored using a heuristic model that can quantitatively explain the dependence of $sigma(Sigma_{rm SFR})$ on gas depletion timescale. Variations in accretion rate are progressively more damped out in regions of low star-formation efficiency leading to a reduced amplitude of variations in star-formation.