Do you want to publish a course? Click here

Tunable single-photon multi-channel quantum router based on a hybrid optomechanical system

136   0   0.0 ( 0 )
 Added by Peng-Cheng Ma
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Routing of photon play a key role in optical communication networks and quantum networks. Although the quantum routing of signals has been investigated in various systems both in theory and experiment, the general form of quantum routing with multi-output terminals still needs to be explored. Here, we propose an experimentally accessible tunable single-photon multi-channel routing scheme using a optomechanics cavity coulomb coupling to a nanomechanical resonator. The router can extract a single-photon from the coherent input signal directly modulate into three different output channels. More important, the two output signal frequencies can be selected by adjusting Coulomb coupling strength. We also demonstrate the vacuum and thermal noise will be insignificant for the optical performance of the single-photon router at temperature of the order of 20 mK. Our proposal may have paved a new avenue towards multi-channel router and quantum network.



rate research

Read More

154 - Jun-Hao Liu , Ya-Fei Yu , 2018
We investigate the routing of a single-photon in a modulated cavity optomechanical system, in which the cavity is driven by a strong coupling field, and the mechanical resonator (MR) is modulated with a weak coherent field. We show that, when there is no a weak coherent field modulating the MR, the system cannot act as a single-photon router, since the signal will be completely covered by the quantum and thermal noises. By introducing the weak coherent field, we can achieve the routing of the single-photon by adjusting the frequency of the weak coherent field, and the system can be immune to the quantum and thermal noises.
Realization of strong optomechanical coupling in the single-photon level is crucial to study quantum nonlinear effects and manipulate macroscopic object. Here, we propose an alternative method to towards this goal in a hybrid ensemble-optomechanical system. The sizable membrane-ensemble (ME) coupling mediated by the auxiliary mode of the cavity gives rise to polaritons with lower and higher frequencies. By tuning the ME coupling ($lambda_{rm en}$) approaching the critical coupling value ($lambda_c$), the eigen-energy of the low-frequency polariton gives rise to critical behavior (i.e., quantum phase transition) when the ensemble is within or beyond the low-excitation approximations. Using this critical behavior, the single-photon optomechanical coupling between the cavity and the low-frequency polariton can be greatly enhanced by almost three orders of magnitude with feasible parameters, while the coupling between the high-frequency polariton and the cavity is fully decouped. Our proposal provides a novel way to investigating Kerr effect and blockade in single-photon optomechanical systems.
Scalable quantum photonic architectures demand highly efficient, high-purity single-photon sources, which can be frequency matched via external tuning. We demonstrate a single-photon source based on an InAs quantum dot embedded in a micropillar resonator, which is frequency tunable via externally-applied stress. Our platform combines the advantages of a Bragg micropillar cavity and the piezo-strain-tuning technique enabling single photon spontaneous emission enhancement via the Purcell effect and quantum dot (QD) with tunable wavelength. Our optomechanical platform has been implemented by integration of semiconductor-based QD-micropillars on a piezoelectric substrate. The fabricated device exhibits spontaneous emission enhancement with a Purcell factor of 4.4$pm$0.7 and allows for a pure triggered single-photon generation with $g^{(2)}(0)$ < 0.07 under resonant excitation. A quantum dot emission energy tuning range of 0.75 meV for 27 kV/cm applied to the piezo substrate has been achieved. Our results pave the way towards the scalable implementation of single-photon quantum photonic technologies using optoelectronic devices.
In this work, we present the design of a superconducting, microwave quantum state router which can realize all-to-all couplings among four quantum modules. Each module consists of a single transmon, readout mode, and communication mode coupled to the router. The router design centers on a parametrically driven, Josephson-junction based three-wave mixing element which generates photon exchange among the modules communication modes. We first demonstrate SWAP operations among the four communication modes, with an average full-SWAP time of 760 ns and average inter-module gate fidelity of 0.97, limited by our modes coherences. We also demonstrate photon transfer and pairwise entanglement between the modules qubits, and parallel operation of simultaneous SWAP gates across the router. These results can readily be extended to faster and higher fidelity router operations, as well as scaled to support larger networks of quantum modules.
We investigate the generation of single photons and photon pairs in a cavity quantum electrodynamics system of a four-level quantum dot coupled to bimodal cavity. By tuning frequencies and intensity ratio of the driving lasers, sub-Poissonian and super-Poissonian photon statistics are obtained in each nondegenerate cavity mode respectively. Single photon emission is characterized as zero-delay second-order correlation function g^2(0)~0.15. Photon pair emission under the two-photon resonance excitation is quantified by Mandel parameter as Q~0.04. The mean cavity photon number in both scenarios can maintain large around 0.1. As a result, single photon emission and two-photon emission can be integrated in our proposed system only by tuning the external parameters of the driving lasers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا