Do you want to publish a course? Click here

An HST/COS survey of molecular hydrogen in DLAs & sub-DLAs at z < 1: Molecular fraction and excitation temperature

193   0   0.0 ( 0 )
 Added by Sowgat Muzahid
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of a systematic search for molecular hydrogen (H2) in low redshift ($ 0.05 lesssim z lesssim 0.7$) DLAs and sub-DLAs with $N(HI) gtrsim 10^{19.0}$ cm$^{-2}$, in the archival HST/COS spectra. Our core sample is comprised of 27 systems with a median $log N(HI) = 19.6$. On the average, our survey is sensitive down to $log N(H2) = 14.4$ corresponding to a molecular fraction of $log f_{H2} = -4.9$ at the median $N(HI)$. H2 is detected in 10 cases (3/5 DLAs and 7/22 sub-DLAs) down to this $f_{H2}$ limit. The H2 detection rate of $50^{+25}_{-12}$ percent seen in our sample, is a factor of $gtrsim 2$ higher than that of the high-$z$ sample of Noterdaeme et al. (2008), for systems with $N(H2) > 10^{14.4}$ cm$^{-2}$. In spite of having $N(HI)$ values typically lower by a factor of 10, low-$z$ H2 systems show molecular fractions ($log f_{H2}=-1.93pm0.63$) that are comparable to the high-$z$ sample. The rotational excitation temperatures ($T_{01} = 133pm55$ K), as measured in our low-$z$ sample, are typically consistent with high-$z$ measurements. Simple photoionization models favour a radiation field much weaker than the mean Galactic ISM field for a particle density in the range 10 - 100 cm$^{-3}$. The impact parameters of the identified host-galaxy candidates are in the range $10 lesssim rho$ (kpc) $lesssim 80$. We, therefore, conjecture that the low-$z$ H2 bearing gas is not related to star-forming disks but stems from self-shielded, tidally stripped or ejected disk-material in the extended halo.



rate research

Read More

194 - Celine Peroux 2001
Quasar absorbers provide a powerful observational tool with which to probe both galaxies and the intergalactic medium up to high redshift. We present a study of the evolution of the column density distribution, f(N,z), and total neutral hydrogen mass in high-column density quasar absorbers using data from a recent high-redshift survey for damped Lyman-alpha (DLA) and Lyman limit system (LLS) absorbers. Whilst in the redshift range 2 to 3.5, ~90% of the neutral HI mass is in DLAs, we find that at z>3.5 this fraction drops to only 55% and that the remaining missing mass fraction of the neutral gas lies in sub-DLAs with N(HI) 10^{19} - 2 * 10^{20} cm^{-2}.
We present the first search for galaxy counterparts of intervening high-z (2<z< 3.6) sub-DLAs and DLAs towards GRBs. Our final sample comprises of five intervening sub-DLAs and DLAs in four GRB fields. To identify candidate galaxy counterparts of the absorbers we use deep optical and near-infrared imaging, and low-, mid- and high-resolution spectroscopy acquired with 6 to 10-m class telescopes, the Hubble and the Spitzer space telescopes. Furthermore, we use the spectroscopic information and spectral-energy-distribution fitting techniques to study them in detail. Our main result is the detection and spectroscopic confirmation of the galaxy counterpart of the intervening DLA at z=3.096 in the field of GRB 070721B (z_GRB=3.6298) as proposed by other authors. We also identify good candidates for the galaxy counterparts of the two strong MgII absorbers at z=0.6915 and 1.4288 towards GRB 050820A (z_GRB=2.615). The properties of the detected DLA galaxy are typical for Lyman-break galaxies (LBGs) at similar redshifts; a young, highly starforming galaxy that shows evidence for a galactic outflow. This supports the hypothesis that a DLA can be the gaseous halo of an LBG. In addition, we report a redshift coincidence of different objects associated with metal lines in the same field, separated by 130-161 kpc. The high detection rate of three correlated structures on a length scale as small as ~150 kpc in two pairs of lines of sight is intriguing. The absorbers in each of these are most likely not part of the same gravitationally bound structure. They more likely represent groups of galaxies.
Determining the spatial distribution and intrinsic physical properties of neutral hydrogen on cosmological scales is one of the key goals of next-generation radio surveys. We use the EAGLE galaxy formation simulations to assess the properties of damped Lyman-alpha absorbers (DLAs) that are associated with galaxies and their underlying dark matter haloes between 0 $leq$ z $leq$ 2. We find that the covering fraction of DLAs increases at higher redshift; a significant fraction of neutral atomic hydrogen (HI) resides in the outskirts of galaxies with stellar mass greater than or equal to 10$^{10}$ M$_odot$; and the covering fraction of DLAs in the circumgalactic medium (CGM) is enhanced relative to that of the interstellar medium (ISM) with increasing halo mass. Moreover, we find that the mean density of the HI in galaxies increases with increasing stellar mass, while the DLAs in high- and low-halo-mass systems have higher column densities than those in galaxies with intermediate halo masses (~ 10$^{12}$ M$_odot$ at z = 0). These high-impact CGM DLAs in high-stellar-mass systems tend to be metal-poor, likely tracing smooth accretion. Overall, our results point to the CGM playing an important role in DLA studies at high redshift (z $geq$ 1). However, their properties are impacted both by numerical resolution and the detailed feedback prescriptions employed in cosmological simulations, particularly that of AGN.
Measuring rest-frame ultraviolet rotational transitions from the Lyman and Werner bands in absorption against a bright background continuum is one of the few ways to directly measure molecular hydrogen (H2). Here we report the detection of Lyman-Werner absorption from H2 at z=0.56 in a sub-damped Ly-alpha system with neutral hydrogen column density N(HI) = 10^(19.5 +/- 0.2) cm^-2. This is the first H2 system analysed at a redshift < 1.5 beyond the Milky Way halo. It has a surprisingly high molecular fraction: log f(H2) > -1.93 +/- 0.36 based on modelling the line profiles, with a robust model-independent lower limit of f(H2) > 10^-3. This is higher than f(H2) values seen along sightlines with similar N(HI) through the Milky Way disk and the Magellanic clouds. The metallicity of the absorber is 0.19 +0.21 -0.10 solar, with a dust-to-gas ratio < 0.36 times the value in the solar neighbourhood. Absorption from associated low-ionisation metal transitions such as OI and FeII is observed in addition to OVI. Using Cloudy models we show that there are three phases present; a ~100 K phase giving rise to H2, a ~10^4 K phase where most of the low-ionisation metal absorption is produced; and a hotter phase associated with OVI. Based on similarities to high velocity clouds in the Milky Way halo showing H2 and the presence of two nearby galaxy candidates with impact parameters of ~10 kpc, we suggest that the absorber may be produced by a tidally-stripped structure similar to the Magellanic Stream.
We use simple models of the spatial structure of the quasar broad line region (BLR) to investigate the properties of so-called ghostly damped Lyman-{alpha} (DLA) systems detected in SDSS data. These absorbers are characterized by the presence of strong metal lines but no Hi Lyman-{alpha} trough is seen in the quasar spectrum indicating that, although the region emitting the quasar continuum is covered by an absorbing cloud, the BLR is only partially covered. One of the models has a spherical geometry, another one is the combination of two wind flows whereas the third model is a Keplerian disk. The models can reproduce the typical shape of the quasar Lyman-{alpha} emission and different ghostly configurations. We show that the DLA Hi column density can be recovered precisely independently of the BLR model used. The size of the absorbing cloud and its distance to the centre of the AGN are correlated. However it may be possible to disentangle the two using an independent estimate of the radius from the determination of the particle density. Comparison of the model outputs with SDSS data shows that the wind and disk models are more versatile than the spherical one and can be more easily adapted to the observations. For all the systems we derive logN(Hi)(cm^{-2})>20.5. With higher quality data it may be possible to distinguish between the models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا