Do you want to publish a course? Click here

Scaling of magnetic reconnection in relativistic collisionless plasmas

263   0   0.0 ( 0 )
 Added by Yi-Hsin Liu
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream magnetization parameter $sigma$ and approaches the light speed when $sigma > O(100)$, leading to an enhanced reconnection rate. In all regimes, the divergence of pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x-line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region remains $sim 0.1$ in both the non-relativistic and relativistic limits.



rate research

Read More

A model of global magnetic reconnection rate in relativistic collisionless plasmas is developed and validated by the fully kinetic simulation. Through considering the force balance at the upstream and downstream of the diffusion region, we show that the global rate is bounded by a value $sim 0.3$ even when the local rate goes up to $sim O(1)$ and the local inflow speed approaches the speed of light in strongly magnetized plasmas. The derived model is general and can be applied to magnetic reconnection under widely different circumstances.
Magnetic reconnection, especially in the relativistic regime, provides an efficient mechanism for accelerating relativistic particles and thus offers an attractive physical explanation for nonthermal high-energy emission from various astrophysical sources. I present a simple analytical model that elucidates key physical processes responsible for reconnection-driven relativistic nonthermal particle acceleration (NTPA) in the large-system, plasmoid-dominated regime in two dimensions. The model aims to explain the numerically-observed dependencies of the power-law index $p$ and high-energy cutoff $gamma_c$ of the resulting nonthermal particle energy spectrum $f(gamma)$ on the ambient plasma magnetization $sigma$, and (for $gamma_c$) on the system size $L$. In this self-similar model, energetic particles are continuously accelerated by the out-of-plane reconnection electric field $E_{rm rec}$ until they become magnetized by the reconnected magnetic field and eventually trapped in plasmoids large enough to confine them. The model also includes diffusive Fermi acceleration by particle bouncing off rapidly moving plasmoids. I argue that the balance between electric acceleration and magnetization controls the power-law index, while trapping in plasmoids governs the cutoff, thus tying the particle energy spectrum to the plasmoid distribution.
Particle-in-cell (PIC) simulations have shown that relativistic collisionless magnetic reconnection drives nonthermal particle acceleration (NTPA), potentially explaining high-energy (X-ray/$gamma$-ray) synchrotron and/or inverse Compton (IC) radiation observed from various astrophysical sources. The radiation back-reaction force on radiating particles has been neglected in most of these simulations, even though radiative cooling considerably alters particle dynamics in many astrophysical environments where reconnection may be important. We present a radiative PIC study examining the effects of external IC cooling on the basic dynamics, NTPA, and radiative signatures of relativistic reconnection in pair plasmas. We find that, while the reconnection rate and overall dynamics are basically unchanged, IC cooling significantly influences NTPA: the particle spectra still show a hard power law (index $geq -2$) as in nonradiative reconnection, but transition to a steeper power law that extends to a cooling-dependent cutoff. The steep power-law index fluctuates in time between roughly $-$3 and $-$5. The time-integrated photon spectra display corresponding power laws with indices $approx -0.5$ and $approx -1.1$, similar to those observed in hard X-ray spectra of accreting black holes.
In a magnetized, collisionless plasma, the magnetic moment of the constituent particles is an adiabatic invariant. An increase in the magnetic-field strength in such a plasma thus leads to an increase in the thermal pressure perpendicular to the field lines. Above a $beta$-dependent threshold (where $beta$ is the ratio of thermal to magnetic pressure), this pressure anisotropy drives the mirror instability, producing strong distortions in the field lines on ion-Larmor scales. The impact of this instability on magnetic reconnection is investigated using a simple analytical model for the formation of a current sheet (CS) and the associated production of pressure anisotropy. The difficulty in maintaining an isotropic, Maxwellian particle distribution during the formation and subsequent thinning of a CS in a collisionless plasma, coupled with the low threshold for the mirror instability in a high-$beta$ plasma, imply that the geometry of reconnecting magnetic fields can differ radically from the standard Harris-sheet profile often used in simulations of collisionless reconnection. As a result, depending on the rate of CS formation and the initial CS thickness, tearing modes whose growth rates and wavenumbers are boosted by this difference may disrupt the mirror-infested CS before standard tearing modes can develop. A quantitative theory is developed to illustrate this process, which may find application in the tearing-mediated disruption of kinetic magnetorotational channel modes.
Cosmic sources of gamma-ray radiation in the GeV range are often characterized by violent variability, in particular this concerns blazars, gamma-ray bursts, and the pulsar wind nebula Crab. Such gamma-ray emission requires a very efficient particle acceleration mechanism. If the environment, in which such emission is produced, is relativistically magnetized (i.e., that magnetic energy density dominates even the rest-mass energy density of matter), then the most natural mechanism of energy dissipation and particle acceleration is relativistic magnetic reconnection. Basic research into this mechanism is performed by means of kinetic numerical simulations of various configurations of collisionless relativistic plasma with the use of the particle-in-cell algorithm. Such technique allows to investigate the details of particle acceleration mechanism, including radiative energy losses, and to calculate the temporal, spatial, spectral and angular distributions of synchrotron and inverse Compton radiation. The results of these simulations indicate that the effective variability time scale of the observed radiation can be much shorter than the light-crossing time scale of the simulated domain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا