No Arabic abstract
We explore voids in dark matter and halo fields from simulations of $Lambda$CDM and Hu-Sawicki $f(R)$ models. In $f(R)$ gravity, dark matter void abundances are greater than that of general relativity (GR). However, when using haloes to identify voids, the differences of void abundances become much smaller, but can still be told apart, in principle, at the 2, 6 and 14 $sigma$ level for the $f(R)$ model parameter amplitudes of $|f_{R0}|=10^{-6}$, $10^{-5}$ and $10^{-4}$. In contrast, the abundance of large voids found using haloes in $f(R)$ gravity is lower than in GR. The more efficient halo formation in underdense regions makes $f(R)$ voids less empty of haloes. This counter intuitive result suggests that voids are not necessarily emptier in $f(R)$ if one looks at galaxies in voids. Indeed, the halo number density profiles of voids are not distinguishable from GR. However, the same $f(R)$ voids are more empty of dark matter. This can in principle be observed by weak gravitational lensing of voids, for which the combination of a spec-$z$ and a photo-$z$ survey over the same sky is necessary. For a volume of 1~(Gpc/$h$)$^3$, neglecting the lensing shape noise, $|f_{R0}|=10^{-5}$ and $10^{-4}$ may be distinguished from GR using the lensing tangential shear signal around voids by 4 and 8$sigma$. The line-of-sight projection of large-scale structure is the main systematics that limits the significance of this signal, limiting the constraining power for $|f_{R0}|=10^{-6}$. The halo void abundance being smaller and the steepening of dark matter void profiles in $f(R)$ models are unique features that can be combined to break the degeneracy between $|f_{R0}|$ and $sigma_8$. The outflow of mass from void centers and velocity dispersions are greater in $f(R)$. Model differences in velocity profiles imply potential powerful constraints of the model in phase space and in redshift space.
We propose a novel technique to probe the expansion history of the Universe based on the clustering statistics of cosmic voids. In particular, we compute their two-point statistics in redshift space on the basis of realistic mock galaxy catalogs and apply the Alcock-Paczynski test. In contrast to galaxies, we find void auto-correlations to be marginally affected by peculiar motions, providing a model-independent measure of cosmological parameters without systematics from redshift-space distortions. Because only galaxy-galaxy and void-galaxy correlations have been considered in these types of studies before, the presented method improves both statistical and systematic uncertainties on the product of angular diameter distance and Hubble rate, furnishing the potentially cleanest probe of cosmic geometry available to date.
Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field - here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state (EOS) of DE which is density-and-scale-dependent. Tension between Type Ia supernovae and Planck could be reduced. In voids the scalar field dramatically alters the EOS of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.
Cosmic voids are progressively emerging as a new viable cosmological probe. Their abundance and density profiles are sensitive to modifications of gravity, as well as to dark energy and neutrinos. The main goal of this work is to investigate the possibility of exploiting cosmic void statistics to disentangle the degeneracies resulting from a proper combination of $f(R)$ modified gravity and neutrino mass. We use N-body simulations to analyse the density profiles and size function of voids traced by both dark matter particles and haloes. We find clear evidence of the enhancement of gravity in $f(R)$ cosmologies in the void density profiles at $z=1$. However, these effects can be almost completely overridden by the presence of massive neutrinos because of their thermal free-streaming. Despite the limited volume of the analysed simulations does not allow us to achieve a statistically relevant abundance of voids larger than $40 mathrm{Mpc}/h$, we find that the void size function at high redshifts and for large voids is potentially an effective probe to disentangle these degenerate cosmological models, which is key in the prospective of the upcoming wide field redshift surveys.
The properties of large underdensities in the distribution of galaxies in the Universe, known as cosmic voids, are potentially sensitive probes of fundamental physics. We use data from the MultiDark suite of N-body simulations and multiple halo occupation distribution mocks to study the relationship between galaxy voids, identified using a watershed void-finding algorithm, and the gravitational potential $Phi$. We find that the majority of galaxy voids correspond to local density minima in larger-scale overdensities, and thus lie in potential wells. However, a subset of voids can be identified that closely trace maxima of the gravitational potential and thus stationary points of the velocity field. We identify a new void observable, $lambda_v$, which depends on a combination of the void size and the average galaxy density contrast within the void, and show that it provides a good proxy indicator of the potential at the void location. A simple linear scaling of $Phi$ as a function of $lambda_v$ is found to hold, independent of the redshift and properties of the galaxies used as tracers of voids. We provide an accurate fitting formula to describe the spherically averaged potential profile $Phi(r)$ about void centre locations. We discuss the importance of these results for the understanding of the evolution history of voids, and for their use in precision measurements of the integrated Sachs-Wolfe effect, gravitational lensing and peculiar velocity distortions in redshift space.
We use the cosmic shear data from the Canada-France-Hawaii Telescope Lensing Survey to place constraints on $f(R)$ and {it Generalized Dilaton} models of modified gravity. This is highly complimentary to other probes since the constraints mainly come from the non-linear scales: maximal deviations with respects to the General-Relativity + $Lambda$CDM scenario occurs at $ksim1 h mbox{Mpc}^{-1}$. At these scales, it becomes necessary to account for known degeneracies with baryon feedback and massive neutrinos, hence we place constraints jointly on these three physical effects. To achieve this, we formulate these modified gravity theories within a common tomographic parameterization, we compute their impact on the clustering properties relative to a GR universe, and propagate the observed modifications into the weak lensing $xi_{pm}$ quantity. Confronted against the cosmic shear data, we reject the $f(R)$ ${ |f_{R_0}|=10^{-4}, n=1}$ model with more than 99.9% confidence interval (CI) when assuming a $Lambda$CDM dark matter only model. In the presence of baryonic feedback processes and massive neutrinos with total mass up to 0.2eV, the model is disfavoured with at least 94% CI in all different combinations studied. Constraints on the ${ |f_{R_0}|=10^{-4}, n=2}$ model are weaker, but nevertheless disfavoured with at least 89% CI. We identify several specific combinations of neutrino mass, baryon feedback and $f(R)$ or Dilaton gravity models that are excluded by the current cosmic shear data. Notably, universes with three massless neutrinos and no baryon feedback are strongly disfavoured in all modified gravity scenarios studied. These results indicate that competitive constraints may be achieved with future cosmic shear data.