Do you want to publish a course? Click here

Observation of broken time-reversal symmetry in the heavy fermion superconductor UPt$_3$

132   0   0.0 ( 0 )
 Added by Elizabeth Schemm
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The symmetry properties of the order parameter characterize different phases of unconventional superconductors. In the case of the heavy-fermion superconductor UPt$_3$, a key question is whether its multiple superconducting phases preserve or break time-reversal symmetry (TRS). We tested for asymmetry in the phase shift between left and right circularly polarized light reflected from a single crystal of UPt$_3$ at normal incidence, finding that this so-called polar Kerr effect appears only below the lower of the two zero-field superconducting transition temperatures. Our results provide evidence for broken TRS in the low-temperature superconducting phase of UPt$_3$, implying a complex two-component order parameter for superconductivity in this system.



rate research

Read More

211 - Y. Machida , A. Itoh , Y. So 2011
The field-orientation dependent thermal conductivity of the heavy-fermion superconductor UPt$_3$ was measured down to very low temperatures and under magnetic fields throughout three distinct superconducting phases: A, B, and C phases. In the C phase, a striking twofold oscillation of the thermal conductivity within the basal plane is resolved reflecting the superconducting gap structure with a line of node along the a axis. Moreover, we find an abrupt vanishing of the oscillation across a transition to the B phase, as a clear indication of a change of gap symmetries. We also identify extra two line nodes below and above the equator in both B and C phases. From these results together with the symmetry consideration, the gap function of UPt$_3$ is conclusively determined as a $E_{1u}$ representation characterized by a combination of two line nodes at the tropics and point nodes at the poles.
We report point contact Andreev Reflection (PCAR) measurements on a high-quality single crystal of the non-centrosymmetric superconductor Re6Zr. We observe that the PCAR spectra can be fitted by taking two isotropic superconducting gaps with Delta_1 ~ 0.79 meV and Delta_2 ~ 0.22 meV respectively, suggesting that there are at least two bands which contribute to superconductivity. Combined with the observation of time reversal symmetry breaking at the superconducting transition from muon spin relaxation measurements (Phys. Rev. Lett. 112, 107002 (2014)), our results imply an unconventional superconducting order in this compound: A multiband singlet state that breaks time reversal symmetry or a triplet state dominated by interband pairing.
The topological superconductor UPt3, has three distinct vortex phases, a strong indication of its unconventional character. Using small-angle neutron scattering we have probed the vortex lattice in the UPt3 B phase with the magnetic field along the crystal c-axis. We find a difference in the vortex lattice configuration depending on the sign of the magnetic field relative to the field direction established upon entering the B phase at low temperature in a field sweep, showing that the vortices in this material posses an internal degree of freedom. This observation is facilitated by the discovery of a field driven non-monotonic vortex lattice rotation, driven by competing effects of the superconducting gap distortion and the vortex-core structure. From our bulk measurements we infer that the superconducting order parameter in the UPt3 B phase breaks time reversal symmetry and exhibits chiral symmetry with respect to the c-axis.
We present polar Kerr effect measurements of the filled skutterudite superconductor PrOs$_4$Sb$_{12}$. Simultaneous AC susceptibility measurements allow us to observe the superconducting transition under the influence of heating from the optical beam. A nonzero Kerr angle $theta_K$ develops below the superconducting transition, saturating at $sim 300$ nrad at low temperatures. This result is repeated across several measurements of multiple samples. By extrapolating the measured $theta_K(T)$ to zero optical power, we are able to show that the Kerr angle onset temperature in one set of measurements is consistent with the transition to the B phase at $T_{C2}$. We discuss the possible explanations for this result and its impact on the understanding of multi-phase and inhomogeneous superconductivity in PrOs$_4$Sb$_{12}$.
Motivated by the spin-triplet superconductor Sr2RuO4, the thermal Hall conductivity is investigated for several pairing symmetries with broken time-reversal symmetry. In the chiral p-wave phase with a fully opened quasiparticle excitation gap, the temperature dependence of the thermal Hall conductivity has a temperature linear term associated with the topological property directly, and an exponential term, which shows a drastic change around the Lifshitz transition. Examining f-wave states as alternative candidates with $bm d=Delta_0hat{z}(k_x^2-k_y^2)(k_xpm ik_y)$ and $bm d=Delta_0hat{z}k_xk_y(k_xpm ik_y)$ with gapless quasiparticle excitations, we study the temperature dependence of the thermal Hall conductivity, where for the former state the thermal Hall conductivity has a quadratic dependence on temperature, originating from the linear dispersions, in addition to linear and exponential behavior. The obtained result may enable us to distinguish between the chiral p-wave and f-wave states in Sr2RuO4.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا