Do you want to publish a course? Click here

Development and Characterization of a Multi-APD Xenon Electroluminescence TPC

375   0   0.0 ( 0 )
 Added by Thorsten Lux
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The performance of an electroluminescence (EL) Time Projection Chamber (TPC) with a multi avalanche photodiode (APD) readout was studied in pure xenon at 3.8 bar. Intercalibration and reconstruction methods were developed and applied to the data yielding energy resolutions as good as 5.3$pm$0.1 % FWHM for 59.5 keV gammas from $^{241}$Am. This result was reproduced with a Monte Carlo (MC) based on Geant4 and Penelope which predicted 5.2 % FWHM for the used setup. Point resolutions of $approx 0.5$ mm were obtained with a pitch of 15 mm between the APDs. These results show that multi-APD readout is a competitive technology for EL detectors filled with pure xenon.



rate research

Read More

187 - S.Ban , K.D.Nakamura , S.Akiyama 2017
AXEL is a high pressure xenon gas TPC detector being developed for neutrinoless double-beta decay search. We use the proportional scintillation mode with a new electroluminescence light detection system to achieve high energy resolution in a large detector. The detector also has tracking capabilities, which enable significant background rejection. To demonstrate our detection technique, we constructed a 10L prototype detector filled with up to 10bar xenon gas. The FWHM energy resolution obtained by the prototype detector is 4.0 $pm$ 0.30 $%$ at 122 keV, which corresponds to 0.9 ~ 2.0 % when extrapolated to the Q value of the $0 ubetabeta$ decay of $^{136}$Xe.
The use of GEM foils for the amplification stage of a TPC instead of a con- ventional MWPC allows one to bypass the necessity of gating, as the backdrift is suppressed thanks to the asymmetric field configuration. This way, a novel continuously running TPC, which represents one option for the PANDA central tracker, can be realized. A medium sized prototype with a diameter of 300 mm and a length of 600 mm will be tested inside the FOPI spectrometer at GSI using a carbon or lithium beam at intermediate energies (E = 1-3AGeV). This detector test under realistic experimental conditions should allow us to verify the spatial resolution for single tracks and the reconstruction capability for displaced vertexes. A series of physics measurement implying pion beams is scheduled with the FOPI spectrometer together with the GEM-TPC as well.
The NEXT experiment aims to observe the neutrinoless double beta decay of xenon in a high-pressure Xe136 gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qbb. This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype. Single electrons resulting from the interactions of Na22 1275 keV gammas and electron-positron pairs produced by
69 - E. Erdal , L. Arazi , V. Chepel 2015
Bubble formation in liquid xenon underneath a Thick Gaseous Electron Multiplier (THGEM) electrode immersed in liquid xenon was observed with a CCD camera. With voltage across the THGEM, the appearance of bubbles was correlated with that of electroluminescence signals induced by ionization electrons from alpha-particle tracks. This confirms recent indirect evidence that the observed photons are due to electroluminescence within a xenon vapor layer trapped under the electrode. The bubbles seem to emerge spontaneously due to heat flow from 300K into the liquid, or in a controlled manner, by locally boiling the liquid with resistive wires. Controlled bubble formation resulted in energy resolution of {sigma}/E~7.5% for ~6,000 ionization electrons. The phenomenon could pave ways towards the conception of large-volume local dual-phase noble-liquid TPCs.
122 - T. Lux , O. Ballester , J. Illa 2011
Detectors with an electroluminesence readout show an excellence performance in respect of energy resolution making them interesting for various applications as X-ray detection, double beta and dark matter experiments, Compton and gamma cameras, etc. In the following the study of a readout based on avalanche photo diodes to detect directly the VUV photons is presented. Results of measurements with 5 APDs in xenon at pressures between 1 and 1.65 bar are shown indicating that such a readout can provide excellent energy and a moderate position resolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا