Do you want to publish a course? Click here

Electroluminescence collection cell as a readout for a high energy resolution Xenon gas TPC

188   0   0.0 ( 0 )
 Added by Sei Ban
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

AXEL is a high pressure xenon gas TPC detector being developed for neutrinoless double-beta decay search. We use the proportional scintillation mode with a new electroluminescence light detection system to achieve high energy resolution in a large detector. The detector also has tracking capabilities, which enable significant background rejection. To demonstrate our detection technique, we constructed a 10L prototype detector filled with up to 10bar xenon gas. The FWHM energy resolution obtained by the prototype detector is 4.0 $pm$ 0.30 $%$ at 122 keV, which corresponds to 0.9 ~ 2.0 % when extrapolated to the Q value of the $0 ubetabeta$ decay of $^{136}$Xe.



rate research

Read More

The NEXT experiment aims to observe the neutrinoless double beta decay of xenon in a high-pressure Xe136 gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qbb. This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype. Single electrons resulting from the interactions of Na22 1275 keV gammas and electron-positron pairs produced by
We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 $^{136}$Xe neutrino-less double beta decay ($0 ubetabeta$) experiment with the main objectives of demonstrating near-intrinsic energy resolution at energies up to 662 keV and of optimizing the NEXT-100 detector design and operating parameters. Energy resolutions of $sim$1% FWHM for 662 keV gamma rays were obtained at 10 and 15 atm and $sim$5% FWHM for 30 keV fluorescence xenon X-rays. These results demonstrate that 0.5% FWHM resolutions for the 2,459 keV hypothetical neutrino-less double beta decay peak are realizable. This energy resolution is a factor 7 to 20 better than that of the current leading $0 ubetabeta$ experiments using liquid xenon and thus represents a significant advancement. We present also first results from a track imaging system consisting of 64 silicon photo-multipliers recently installed in NEXT-DBDM that, along with the excellent energy resolution, demonstrates the key functionalities required for the NEXT-100 $0 ubetabeta$ search.
A high-pressure xenon gas time projection chamber, with a unique cellular readout structure based on electroluminescence, has been developed for a large-scale neutrinoless double-beta decay search. In order to evaluate the detector performance and validate its design, a 180~L size prototype is being constructed and its commissioning with partial detector has been performed. The obtained energy resolution at 4.0~bar is 1.73 $pm$ 0.07% (FWHM) at 511 keV. The energy resolution at the $^{136}$Xe neutrinoless double-beta decay Q-value is estimated to be between 0.79 and 1.52% (FWHM) by extrapolation. Reconstructed event topologies show patterns peculiar to track end-point which can be used to distinguish $0 ubetabeta$ signals from gamma-ray backgrounds.
The search for a novel technology able to detect and reconstruct nuclear recoil events in the keV energy range has become more and more important as long as vast regions of high mass WIMP-like Dark Matter candidate have been excluded. Gaseous Time Projection Chambers (TPC) with optical readout are very promising candidate combining the complete event information provided by the TPC technique to the high sensitivity and granularity of last generation scientific light sensors. A TPC with an amplification at the anode obtained with Gas Electron Multipliers (GEM) was tested at the Laboratori Nazionali di Frascati. Photons and neutrons from radioactive sources were employed to induce recoiling nuclei and electrons with kinetic energy in the range [1-100] keV. A He-CF4 (60/40) gas mixture was used at atmospheric pressure and the light produced during the multiplication in the GEM channels was acquired by a high position resolution and low noise scientific CMOS camera and a photomultiplier. A multi-stage pattern recognition algorithm based on an advanced clustering technique is presented here. A number of cluster shape observables are used to identify nuclear recoils induced by neutrons originated from a AmBe source against X-ray 55Fe photo-electrons. An efficiency of 18% to detect nuclear recoils with an energy of about 6 keV is reached obtaining at the same time a 96% 55Fe photo-electrons suppression. This makes this optically readout gas TPC a very promising candidate for future investigations of ultra-rare events as directional direct Dark Matter searches.
Several efforts are ongoing for the development of spherical gaseous time projection chamber detectors for the observation of rare phenomena such as weakly interacting massive particles or neutrino interactions. The proposed detector, thanks to its simplicity, low energy threshold and energy resolution, could be used to observe the $betabeta0 u$ process i.e. the neutrinoless double beta decay. In this work, a specific setup is presented for the measurement of $betabeta0 u$ on 50~kg of $^{136}$Xe. The different backgrounds are studied, demonstrating the possibility to reach a total background per year in the detector mass at the level of 2 events per year. The obtained results are competitive with the present generation of experiments and could represent the first step of a more ambitious roadmap including the $betabeta0 u$ search with different gases with the same detector and therefore the same background sources. The constraints in terms of detector constructions and material purity are also addressed, showing that none of them represents a show stopper for the proposed experimental setup.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا