No Arabic abstract
We investigate the production of ultra-high-energy cosmic ray (UHECR) in relativistic jets from low-luminosity active galactic nuclei (LLAGN). We start by proposing a model for the UHECR contribution from the black holes (BHs) in LLAGN, which present a jet power $P_{mathrm{j}} leqslant 10^{46}$ erg s$^{-1}$. This is in contrast to the opinion that only high-luminosity AGN can accelerate particles to energies $ geqslant 50$ EeV. We rewrite the equations which describe the synchrotron self-absorbed emission of a non-thermal particle distribution to obtain the observed radio flux density from sources with a flat-spectrum core and its relationship to the jet power. We find that the UHECR flux is dependent on the {it observed radio flux density, the distance to the AGN, and the BH mass}, where the particle acceleration regions can be sustained by the magnetic energy extraction from the BH at the center of the AGN. We use a complete sample of 29 radio sources with a total flux density at 5 GHz greater than 0.5 Jy to make predictions for the maximum particle energy, luminosity, and flux of the UHECRs from nearby AGN. These predictions are then used in a semi-analytical code developed in Mathematica (SAM code) as inputs for the Monte-Carlo simulations to obtain the distribution of the arrival direction at the Earth and the energy spectrum of the UHECRs, taking into account their deflection in the intergalactic magnetic fields. For comparison, we also use the CRPropa code with the same initial conditions as for the SAM code. Importantly, to calculate the energy spectrum we also include the weighting of the UHECR flux per each UHECR source. Next, we compare the energy spectrum of the UHECRs with that obtained by the Pierre Auger Observatory.
The origin of ultra high energy cosmic rays promises to lead us to a deeper understanding of the structure of matter. This is possible through the study of particle collisions at center-of-mass energies in interactions far larger than anything possible with the Large Hadron Collider, albeit at the substantial cost of no control over the sources and interaction sites. For the extreme energies we have to identify and understand the sources first, before trying to use them as physics laboratories. Here we describe the current stage of this exploration. The most promising contenders as sources are radio galaxies and gamma ray bursts. The sky distribution of observed events yields a hint favoring radio galaxies. Key in this quest are the intergalactic and galactic magnetic fields, whose strength and structure are not yet fully understood. Current data and statistics do not yet allow a final judgment. We outline how we may progress in the near future.
We measure the correlation between sky coordinates of the Swift BAT catalogue of active galactic nuclei with the arrival directions of the highest energy cosmic rays detected by the Auger Observatory. The statistically complete, hard X-ray catalogue helps to distinguish between AGN and other source candidates that follow the distribution of local large-scale structure. The positions of the full catalogue are marginally uncorrelated with the cosmic ray arrival directions, but when weighted by their hard X-ray flux, AGN within 100 Mpc are correlated at a significance level of 98 per cent. This correlation sharply decreases for sources beyond ~100 Mpc, suggestive of a GZK suppression. We discuss the implications for determining the mechanism that accelerates particles to these extreme energies in excess of 10^19 eV.
The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 1017eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present an introduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.
Low luminosity active galactic nuclei are more abundant and closer to us than the luminous ones but harder to explore as they are faint. We have selected the four sources NGC 315, NGC 4261, NGC 1275, and NGC 4486, which have been detected in gamma rays byFermi-LAT. We have compiled their long-term radio, optical, X-ray data from different telescopes, analysed XMM-Newton data for NGC 4486, XMM-Newton and Swift data for NGC 315. We have analysed the Fermi-LAT data collected over the period of 2008 to 2020 for all of them. Electrons are assumed to be accelerated to relativistic energies in sub-parsec scale jets, which radiate by synchrotron and synchrotron self-Compton emission covering radio to gamma-ray energies. This model can fit most of the multi-wavelength data points of the four sources. However, the gamma-ray data points from NGC 315 and NGC 4261 can be well fitted only up to 1.6 GeV and 0.6 GeV, respectively in this model. This motivates us to find out the origin of the higher energy {gamma}-rays detected from these sources. Kilo-parsec scale jets have been observed previously from these sources in radio and X-ray frequencies. If we assume {gamma}-rays are also produced in kilo-parsec scale jets of these sources from inverse Compton scattering of starlight photons by ultra-relativistic electrons, then it is possible to fit the gamma-ray data at higher energies. Our result also suggests that strong host galaxy emission is required to produce GeV radiation from kilo-parsec scale jets.
The acceleration site for ultra-high energy cosmic rays (UHECR) is still an open question despite extended research. In this paper, we reconsider the prompt phase of gamma-ray bursts (GRBs) as a possible candidate for this acceleration and constrain the maximum proton energy in optically thin synchrotron and photospheric models, using properties of the prompt photon spectra. We find that neither of the models favour acceleration of protons to $10^{20}$ eV in high-luminosity bursts. We repeat the calculations for low-luminosity GRBs (llGRBs) considering both protons and completely stripped iron and find that the highest obtainable energies are $< 10^{19}$ eV and $< 10^{20}$ eV for protons and iron respectively, regardless of the model. We conclude therefore that for our fiducial parameters, GRBs, including low-luminosity bursts, contribute little to none to the UHECR observed. We further constrain the conditions necessary for an association between UHECR and llGRBs and find that iron can be accelerated to $10^{20}$ eV in photospheric models, given very efficiency acceleration and/or a small fractional energy given to a small fraction of accelerated electrons. This will necessarily result in high prompt optical fluxes, and the detection of such a signal could therefore be an indication of successful UHECR acceleration at the source.