Do you want to publish a course? Click here

Newtonian View of General Relativistic Stars

135   0   0.0 ( 0 )
 Added by Hermano Velten
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although general relativistic cosmological solutions, even in the presence of pressure, can be mimicked by using neo-Newtonian hydrodynamics, it is not clear whether there exists the same Newtonian correspondence for spherical static configurations. General relativity solutions for stars are known as the Tolman-Oppenheimer-Volkoff (TOV) equations. On the other hand, the Newtonian description does not take into account the total pressure effects and therefore can not be used in strong field regimes. We discuss how to incorporate pressure in the stellar equilibrium equations within the neo-Newtonian framework. We compare the Newtonian, neo-Newtonian and the full relativistic theory by solving the equilibrium equations for both three approaches and calculating the mass-radius diagrams for some simple neutron stars equation of state.



rate research

Read More

We have studied the dynamics of an equal-mass magnetized neutron-star binary within a resistive magnetohydrodynamic (RMHD) approach in which the highly conducting stellar interior is matched to an electrovacuum exterior. Because our analysis is aimed at assessing the modifications introduced by resistive effects on the dynamics of the binary after the merger and through to collapse, we have carried out a close comparison with an equivalent simulation performed within the traditional ideal magnetohydrodynamic approximation. We have found that there are many similarities between the two evolutions but also one important difference: the survival time of the hyper massive neutron star increases in a RMHD simulation. This difference is due to a less efficient magnetic-braking mechanism in the resistive regime, in which matter can move across magnetic-field lines, thus reducing the outward transport of angular momentum. Both the RMHD and the ideal magnetohydrodynamic simulations carried here have been performed at higher resolutions and with a different grid structure than those in previous work of ours [L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C. Kouveliotou, and M. A. Aloy, Astrophys. J. Letters 732, L6 (2011)], but confirm the formation of a low-density funnel with an ordered magnetic field produced by the black hole--torus system. In both regimes the magnetic field is predominantly toroidal in the highly conducting torus and predominantly poloidal in the nearly evacuated funnel. Reconnection processes or neutrino annihilation occurring in the funnel, none of which we model, could potentially increase the internal energy in the funnel and launch a relativistic outflow, which, however, is not produced in these simulations.
We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of the perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.
We study the stability of relativistic stars in scalar-tensor theories with a nonminimal coupling of the form $F(phi)R$, where $F$ depends on a scalar field $phi$ and $R$ is the Ricci scalar. On a spherically symmetric and static background, we incorporate a perfect fluid minimally coupled to gravity as a form of the Schutz-Sorkin action. The odd-parity perturbation for the multipoles $l geq 2$ is ghost-free under the condition $F(phi)>0$, with the speed of gravity equivalent to that of light. For even-parity perturbations with $l geq 2$, there are three propagating degrees of freedom arising from the perfect-fluid, scalar-field, and gravity sectors. For $l=0, 1$, the dynamical degrees of freedom reduce to two modes. We derive no-ghost conditions and the propagation speeds of these perturbations and apply them to concrete theories of hairy relativistic stars with $F(phi)>0$. As long as the perfect fluid satisfies a weak energy condition with a positive propagation speed squared $c_m^2$, there are neither ghost nor Laplacian instabilities for theories of spontaneous scalarization and Brans-Dicke (BD) theories with a BD parameter $omega_{rm BD}>-3/2$ (including $f(R)$ gravity). In these theories, provided $0<c_m^2 le 1$, we show that all the propagation speeds of even-parity perturbations are sub-luminal inside the star, while the speeds of gravity outside the star are equivalent to that of light.
63 - Mark Miller 2005
We investigate the dynamic stability of inspiraling neutron stars by performing multiple-orbit numerical relativity simulations of the binary neutron star inspiral process. By introducing eccentricities in the orbits of the neutron stars, significant changes in orbital separation are obtained within orbital timescales. We find that as the binary system evolves from apastron to periastron (as the binary separation decreases), the central rest mass density of each star decreases, thus stabilizing the stars against individual prompt collapse. As the binary system evolves from periastron to apastron, the central rest mass density increases; the neutron stars re-compress as the binary separation increases.
496 - Woei Chet Lim , Alan Coley 2013
We investigate a general relativistic mechanism in which spikes generate matter overdensities in the early universe. When the cosmological fluid is tilted, the tilt provides another mechanism in generating matter inhomogeneities. We numerically investigate the effect of a sign change in the tilt, when there is a spike but the tilt does not change sign, and when the spike and the sign change in the tilt coincide. We find that the tilt plays the primary role in generating matter inhomogeneities, and it does so by creating both local overdensities and underdensities. We discuss of the physical implications of the work.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا