No Arabic abstract
We investigate a general relativistic mechanism in which spikes generate matter overdensities in the early universe. When the cosmological fluid is tilted, the tilt provides another mechanism in generating matter inhomogeneities. We numerically investigate the effect of a sign change in the tilt, when there is a spike but the tilt does not change sign, and when the spike and the sign change in the tilt coincide. We find that the tilt plays the primary role in generating matter inhomogeneities, and it does so by creating both local overdensities and underdensities. We discuss of the physical implications of the work.
Although general relativistic cosmological solutions, even in the presence of pressure, can be mimicked by using neo-Newtonian hydrodynamics, it is not clear whether there exists the same Newtonian correspondence for spherical static configurations. General relativity solutions for stars are known as the Tolman-Oppenheimer-Volkoff (TOV) equations. On the other hand, the Newtonian description does not take into account the total pressure effects and therefore can not be used in strong field regimes. We discuss how to incorporate pressure in the stellar equilibrium equations within the neo-Newtonian framework. We compare the Newtonian, neo-Newtonian and the full relativistic theory by solving the equilibrium equations for both three approaches and calculating the mass-radius diagrams for some simple neutron stars equation of state.
We derive the equations of motion for scalar metric perturbations in a particular nonsingular bouncing cosmology, where the big bang singularity is replaced by a spacetime defect with a degenerate metric. The adiabatic perturbation solution is obtained for nonrelativistic hydrodynamic matter. We get the same result by working with conformal coordinates. This last method is also valid for vector and tensor metric perturbations, and selected results are presented. We, finally, discuss several new effects from the linear perturbations of this nonsingular bouncing cosmology, such as across-bounce information transfer and the possible imprint on cosmological perturbations from a new phase responsible for the effective spacetime defect.
We develop a technique to study relativistic perturbations in the generalised brane cosmological scenario, which is a generalisation of the multi-fluid cosmological perturbations to brane cosmology. The novelty of the technique lies in the inclusion of a radiative bulk which is responsible for bulk-brane energy exchange, and in turn, modifies the standard perturbative analysis to a great extent. The analysis involves a geometric fluid -- called the Weyl fluid -- whose nature and role have been studied extensively both for the empty bulk and the radiative bulk scenario. Subsequently, we find that this Weyl fluid can be a possible geometric candidate for dark matter in this generalised brane cosmological framework.
Angular momentum at null infinity has a supertranslation ambiguity from the lack of a preferred Poincare group and a similar ambiguity when the center-of-mass position changes as linear momentum is radiated. Recently, we noted there is an additional one-parameter ambiguity in the possible definitions of angular momentum and center-of-mass charge. We argue that this one-parameter ambiguity can be resolved by considering the generalized BMS charges that are constructed from local 2-sphere-covariant tensors near null infinity; these supertranslation-covariant charges differ from several expressions currently used. Quantizing angular momentum requires a supertranslation-invariant angular momentum in the center-of-mass frame. We propose one such definition of angular momentum involving nonlocal quantities on the 2-sphere, which could be used to define a quantum notion of general-relativistic angular momentum.
We study linear cosmological perturbations in a previously introduced family of deformations of general relativity characterized by the absence of new degrees of freedom. The homogeneous and isotropic background in this class of theories is unmodified and is described by the usual Friedmann equations. The theory of cosmological perturbations is modified and the relevant deformation parameter has the dimension of length. Gravitational perturbations of the scalar type can be described by a certain relativistic potential related to the matter perturbations just as in general relativity. A system of differential equations describing the evolution of this potential and of the stress-energy density perturbations is obtained. We find that the evolution of scalar perturbations proceeds with a modified effective time-dependent speed of sound, which, contrary to the case of general relativity, does not vanish even at the matter-dominated stage. In a broad range of values of the length parameter controlling the deformation, a specific transition from the regime of modified gravity to the regime of general relativity in the evolution of scalar perturbations takes place during the radiation domination. In this case, the resulting power spectrum of perturbations in radiation and dark matter is suppressed on the comoving spatial scales that enter the Hubble radius before this transition. We estimate the bounds on the deformation parameter for which this suppression does not lead to observable consequences. Evolution of scalar perturbations at the inflationary stage is modified but very slightly and the primordial spectrum generated during inflation is not noticeably different from the one obtained in general relativity.