Do you want to publish a course? Click here

Trapping Penguins with Entangled B Mesons

152   0   0.0 ( 0 )
 Added by Susan Gardner
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The first direct observation of time-reversal (T) violation in the $Bbar{B}$ system has been reported by the BaBar collaboration, employing the method of Ba$tilde {rm n}!$uls and Bernabeu. Given this, we generalize their analysis of the time-dependent T-violating asymmetry ($A_{T}$) to consider different choices of CP tags for which the dominant amplitudes have the same weak phase. As one application, we find that it is possible to measure departures from the universality of $sin(2beta)$ directly. If $sin(2beta)$ is universal, as in the Standard Model, the method permits the direct determination of penguin effects in these channels. Our method, although no longer a strict test of T, can yield tests of the $sin(2beta)$ universality, or, alternatively, of penguin effects, of much improved precision even with existing data sets.

rate research

Read More

The structure of the scalar mesons has been a subject of debate for many decades. In this work we look for $bar{q}q$ states among the physical resonances using an extended Linear Sigma Model that contains scalar, pseudoscalar, vector, and axial-vector mesons both in the non-strange and strange sectors. We perform global fits of meson masses, decay widths and amplitudes in order to ascertain whether the scalar $bar{q}q$ states are below or above 1 GeV. We find the scalar states above 1 GeV to be preferred as $bar{q}q$ states.
Exploiting an interplay of the Bethe-Salpeter equation enabling us to regard mesons as bound states of quark and antiquark and the Dyson-Schwinger equation controlling the dressed quark propagator, we amend existing studies of quarkonia by a comprehensive description of open-flavour mesons composed of all conceivable combinations of quark flavour. Employing throughout a fixed set of model parameters, we predict some basic characteristics of these mesons, i.e., their masses, leptonic decay constants and corresponding in-hadron condensates entering in a generalized formulation of the Gell-Mann-Oakes-Renner relation.
96 - Ya. I. Azimov 2002
Isospin violating mixing of rho- and omega-mesons is reconsidered in terms of propagators. Its influence on various pairs of (rho^0,omega)-decays to the same final states is demonstrated. Some of them, (rho^0,omega)topi^+pi^- and (rho^0,omega)topi^0gamma, have been earlier discussed in the literature, others (e.g., (rho^0,omega)toetagamma and (rho^0,omega)to e^+e^-) are new in this context. Changes in partial widths for all the decay pairs are shown to be correlated. The set of present experimental data, though yet inconclusive, provides some limits for the direct (rhoomega)-coupling and indirectly supports enhancement of rho^0topi^0gamma in comparison with rho^{pm}topi^{pm}gamma, though not so large as in some previous estimates.
When high-energy single-hadron production takes place inside an identified jet, there are important correlations between the fragmentation and phase-space cuts. For example, when one-hadron yields are measured in on-resonance B-factory data, a cut on the thrust event shape T is required to remove the large b-quark contribution. This leads to a dijet final state restriction for the light-quark fragmentation process. Here we complete our analysis of unpolarized fragmentation of (light) quarks and gluons to a light hadron h with energy fraction z in e+ e- -> dijet + h at the center-of-mass energy Q=10.58 GeV. In addition to the next-to-next-to-leading order resummation of logarithms of 1-T, we include the next-to-leading order (NLO) nonsingular O(1-T) contribution to the cross section, the resummation of threshold logarithms of 1-z, and the leading nonperturbative contribution to the soft function. Our results for the correlations between fragmentation and the thrust cut are presented in a way that can be directly tested against B-factory data. These correlations are also observed in Pythia, but are surprisingly smaller at NLO.
A symmetry-preserving treatment of a vector-vector contact interaction is used to study charmed heavy-light mesons. The contact interaction is a representation of nonperturbative kernels used in Dyson-Schwinger and Bethe-Salpeter equations of QCD. The Dyson-Schwinger equation is solved for the $u,,d,,s$ and $c$ quark propagators and the bound-state Bethe-Salpeter amplitudes respecting spacetime-translation invariance and the Ward-Green-Takahashi identities associated with global symmetries of QCD are obtained to calculate masses and electroweak decay constants of the pseudoscalar $pi,,K$, $D$ and $D_s$ and vector $rho$, $K^*$, $D^*$, and $D^*_s$ mesons. The predictions of the model are in good agreement with available experimental and lattice QCD data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا