Do you want to publish a course? Click here

A Relativistic view on large scale N-body simulations

129   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the relation between the output of Newtonian N-body simulations on scales that approach or exceed the particle horizon to the description of General Relativity. At leading order, the Zeldovich approximation is correct on large scales, coinciding with the General Relativistic result. At second order in the initial metric potential, the trajectories of particles deviate from the second order Newtonian result and hence the validity of 2LPT initial conditions should be reassessed when used in very large simulations. We also advocate using the expression for the synchronous gauge density as a well behaved measure of density fluctuations on such scales.



rate research

Read More

Initial conditions for (Newtonian) cosmological N-body simulations are usually set by re-scaling the present-day power spectrum obtained from linear (relativistic) Boltzmann codes to the desired initial redshift of the simulation. This back-scaling method can account for the effect of inhomogeneous residual thermal radiation at early times, which is absent in the Newtonian simulations. We analyse this procedure from a fully relativistic perspective, employing the recently-proposed Newtonian motion gauge framework. We find that N-body simulations for LambdaCDM cosmology starting from back-scaled initial conditions can be self-consistently embedded in a relativistic space-time with first-order metric potentials calculated using a linear Boltzmann code. This space-time coincides with a simple N-body gauge for z<50 for all observable modes. Care must be taken, however, when simulating non-standard cosmologies. As an example, we analyse the back-scaling method in a cosmology with decaying dark matter, and show that metric perturbations become large at early times in the back-scaling approach, indicating a breakdown of the perturbative description. We suggest a suitable forwards approach for such cases.
We examine the deviation of Cold Dark Matter particle trajectories from the Newtonian result as the size of the region under study becomes comparable to or exceeds the particle horizon. To first order in the gravitational potential, the general relativistic result coincides with the Zeldovich approximation and hence the Newtonian prediction on all scales. At second order, General Relativity predicts corrections which overtake the corresponding second order Newtonian terms above a certain scale of the order of the Hubble radius. However, since second order corrections are very much suppressed on such scales, we conclude that simulations which exceed the particle horizon but use Newtonian equations to evolve the particles, reproduce the correct trajectories very well. The dominant relativistic corrections to the power spectrum on scales close to the horizon are at most of the order of $sim 10^{-5}$ at $z=49$ and $sim 10^{-3}$ at $z=0$. The differences in the positions of real space features are affected at a level below $10^{-6}$ at both redshifts. Our analysis also clarifies the relation of N-body results to relativistic considerations.
We show how standard Newtonian N-body simulations can be interpreted in terms of the weak-field limit of general relativity by employing the recently developed Newtonian motion gauge. Our framework allows the inclusion of radiation perturbations and the non-linear evolution of matter. We show how to construct the weak-field metric by combining Newtonian simulations with results from Einstein-Boltzmann codes. We discuss observational effects on weak lensing and ray tracing, identifying important relativistic corrections.
We use N-body simulation to study the structure formation in the Cubic Galileon Gravity model where along with the usual kinetic and potential term we also have a higher derivative self-interaction term. We find that the large scale structure provides a unique constraining power for this model. The matter power spectrum, halo mass function, galaxy-galaxy weak lensing signal, marked density power spectrum as well as count in cell are measured. The simulations show that there are less massive halos in the Cubic Galileon Gravity model than corresponding $Lambda$CDM model and the marked density power spectrum in these two models are different by more than $10%$. Furthermore, the Cubic Galileon model shows significant differences in voids compared to $Lambda$CDM. The number of low density cells is far higher in the Cubic Galileon model than that in the $Lambda$CDM model. Therefore, it would be interesting to put constraints on this model using future large scale structure observations, especially in void regions.
We address the generation of initial conditions (ICs) for GRAMSES, a code for nonlinear general relativistic (GR) $N$-body cosmological simulations recently introduced in Ref. [1]. GRAMSES adopts a constant mean curvature slicing with a minimal distortion gauge, where the linear growth rate is scale-dependent, and the standard method for realising initial particle data is not straightforwardly applicable. A new method is introduced, in which the initial positions of particles are generated from the displacement field realised for a matter power spectrum as usual, but the velocity is calculated by finite-differencing the displacement fields around the initial redshift. In this way, all the information required for setting up the initial conditions is drawn from three consecutive input matter power spectra, and additional assumptions such as scale-independence of the linear growth factor and growth rate are not needed. We implement this method in a modified 2LPTic code, and demonstrate that in a Newtonian setting it can reproduce the velocity field given by the default 2LPTic code with subpercent accuracy. We also show that the matter and velocity power spectra of the initial particle data generated for GRAMSES simulations using this method agree very well with the linear-theory predictions in the particular gauge used by GRAMSES. Finally, we discuss corrections to the finite difference calculation of the velocity when radiation is present, as well as additional corrections implemented in GRAMSES to ensure consistency. This method can be applied in ICs generation for GR simulations in generic gauges, and simulations of cosmological models with scale-dependent linear growth rate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا