No Arabic abstract
(Abridged) The existence of exotic dark matter particles outside the standard model of particle physics constitutes a central hypothesis of the current standard model of cosmology (SMoC). Using a wide range of observational data I outline why this hypothesis cannot be correct for the real Universe. Assuming the SMoC to hold, (i) the two types of dwarf galaxies, the primordial dwarfs with dark matter and the tidal dwarf galaxies without dark matter, ought to present clear observational differences. But there is no observational evidence for two separate families of dwarfs, neither in terms of their location relative to the baryonic Tully-Fisher relation nor in terms of their radius--mass relation. And, the arrangements in rotating disk-of-satellites, in particular around the Milky Way and Andromeda, has been found to be only consistent with most if not all dwarf satellite galaxies being tidal dwarf galaxies. The highly symmetric structure of the entire Local Group too is inconsistent with its galaxies stemming from a stochastic merger-driven hierarchical buildup over cosmic time. (ii) Dynamical friction on the expansive and massive dark matter halos is not evident in the data. Taking the various lines of evidence together, the hypothesis that dynamically relevant exotic dark matter exists needs to be firmly rejected.
The Local Group is a unique environment in which to study the astrophysics of galaxy formation. The proximity of the Milky Way and M31 causes a large fraction of the low-mass halo population to interact with more massive dark matter haloes, which increases their concentrations and strips them of gas and other material. Some low-mass haloes pass through the haloes of the Milky Way or M31 and are either ejected into the field or exchanged between the two primary hosts. We use high resolution gas-dynamical simulations to describe a new class of field halo that passed through the haloes of both the Milky Way and M31 at early times and is almost twice as concentrated as isolated field haloes. These Hermeian haloes are distributed anisotropically at greater distances from the Local Group barycentre than the primary haloes and appear to cluster close to the Milky Way and M31 in projection. We show that some Hermeian haloes can host galaxies that are promising targets for indirect dark matter searches and are competitive with signals from other dwarf galaxies. Hermeian galaxies in the Local Group should be detectable by forthcoming wide-field imaging surveys.
Under the hypothesis of a Dark Matter composed by supersymmetric particles like neutralinos, we investigate the possibility that their annihilation in the haloes of nearby galaxies could produce detectable fluxes of $gamma$-photons. Expected fluxes depend on several, poorly known quantities such as the density profiles of Dark Matter haloes, the existence and prominence of central density cusps and the presence of a population of sub-haloes. We find that, for all reasonable choices of Dark Matter halo models, the intensity of the $gamma$-ray flux from some of the nearest extragalactic objects, like M31, is comparable or higher than the diffuse Galactic foreground. We show that next generation ground-based experiments could have the sensitivity to reveal such fluxes which could help us unveiling the nature of Dark Matter particles.
We show that the canonical oscillation-based (non-resonant) production of sterile neutrino dark matter is inconsistent at $>99$% confidence with observations of galaxies in the Local Group. We set lower limits on the non-resonant sterile neutrino mass of $2.5$ keV (equivalent to $0.7$ keV thermal mass) using phase-space densities derived for dwarf satellite galaxies of the Milky Way, as well as limits of $8.8$ keV (equivalent to $1.8$ keV thermal mass) based on subhalo counts of $N$-body simulations of M 31 analogues. Combined with improved upper mass limits derived from significantly deeper X-ray data of M 31 with full consideration for background variations, we show that there remains little room for non-resonant production if sterile neutrinos are to explain $100$% of the dark matter abundance. Resonant and non-oscillation sterile neutrino production remain viable mechanisms for generating sufficient dark matter sterile neutrinos.
If dark matter (DM) is composed by particles which are non-gravitationally coupled to ordinary matter, their annihilations or decays in cosmic structures can result in detectable radiation. We show that the most powerful technique to detect a particle DM signal outside the Local Group is to study the angular cross-correlation of non-gravitational signals with low-redshift gravitational probes. This method allows to enhance signal-to-noise from the regions of the Universe where the DM-induced emission is preferentially generated. We demonstrate the power of this approach by focusing on GeV-TeV DM and on the recent cross-correlation analysis between the 2MASS galaxy catalogue and the Fermi-LAT gamma-ray maps. We show that this technique is more sensitive than other extragalactic gamma-ray probes, such as the energy spectrum and angular autocorrelation of the extragalactic background, and emission from clusters of galaxies. Intriguingly, we find that the measured cross-correlation can be well fitted by a DM component, with thermal annihilation cross section and mass between 10 and 100 GeV, depending on the small-scale DM properties and gamma-ray production mechanism. This solicits further data collection and dedicated analyses.
The nature of the dark matter can affect the collapse time of dark matter haloes, and can therefore be imprinted in observables such as the stellar population ages and star formation histories of dwarf galaxies. In this paper we use high resolution hydrodynamical simulations of Local Group-analogue (LG) volumes in cold dark matter (CDM), sterile neutrino warm dark matter (WDM) and self-interacting dark matter (SIDM) models with the EAGLE galaxy formation code to study how galaxy formation times change with dark matter model. We are able to identify the same haloes in different simulations, since they share the same initial density field phases. We find that the stellar mass of galaxies depends systematically on resolution, and can differ by as much as a factor of two in haloes of a given dark matter mass. The evolution of the stellar populations in SIDM is largely identical to that of CDM, but in WDM early star formation is instead suppressed. The time at which LG haloes can begin to form stars through atomic cooling is delayed by $sim$200~Myr in WDM models compared to CDM. It will be necessary to measure stellar ages of old populations to a precision of better than 100~Myr, and to address degeneracies with the redshift of reionization -- and potentially other baryonic processes -- in order to use these observables to distinguish between dark matter models.