Do you want to publish a course? Click here

Decoding the stellar fossils of the dusty Milky Way progenitors

316   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the metallicity distribution function (MDF) in the Galactic halo and the relative fraction of Carbon-normal and Carbon-rich stars. To this aim, we use an improved version of the semi-analytical code GAlaxy MErger Tree and Evolution (GAMETE), that reconstructs the hierarchical merger tree of the MW, following the star formation history and the metal and dust evolution in individual progenitors. The predicted scaling relations between the dust, metal and gas masses for MW progenitors show a good agreement with observational data of local galaxies and of Gamma Ray Burst (GRB) host galaxies at 0.1 < z < 6.3. We find that in order to reproduce the observed tail of the MDF at [Fe/H] < -4, faint SN explosions have to dominate the metal yields produced by Pop III stars, disfavoring a Pop III IMF that extends to stellar masses > 140 M_{sun}, into the Pair-Instability SN progenitor mass range. The relative contribution of C-normal and C-enhanced stars to the MDF and its dependence on [Fe/H] points to a scenario where the Pop III/II transition is driven by dust-cooling and the first low-mass stars form when the dust-to-gas ratio in their parent clouds exceeds a critical value of D_crit = 4.4 x 10^{-9}.



rate research

Read More

Here we investigate the evolution of a Milky Way (MW) -like galaxy with the aim of predicting the properties of its progenitors all the way from $z sim 20$ to $z = 0$. We apply GAMESH (Graziani et al. 2015) to a high resolution N-Body simulation following the formation of a MW-type halo and we investigate its properties at $z sim 0$ and its progenitors in $0 < z < 4$. Our model predicts the observed galaxy main sequence, the mass-metallicity and the fundamental plane of metallicity relations in $0 < z < 4$. It also reproduces the stellar mass evolution of candidate MW progenitors in $0 lesssim z lesssim 2.5$, although the star formation rate and gas fraction of the simulated galaxies follow a shallower redshift dependence. We find that while the MW star formation and chemical enrichment are dominated by the contribution of galaxies hosted in Lyman $alpha$-cooling halos, at z > 6 the contribution of star forming mini-halos is comparable to the star formation rate along the MW merger tree. These systems might then provide an important contribution in the early phases of reionization. A large number of mini-halos with old stellar populations, possibly Population~III stars, are dragged into the MW or survive in the Local Group. At low redshift dynamical effects, such as halo mergers, tidal stripping and halo disruption redistribute the baryonic properties among halo families. These results are critically discussed in light of future improvements including a more sophisticated treatment of radiative feedback and inhomogeneous metal enrichment.
We examine the spatial clustering of blue horizontal branch (BHB) stars from the $textit{u}$-band of the Canada-France Imaging Survey (CFIS, a component of the Ultraviolet Near-Infrared Optical Northern Survey, or UNIONS). All major groupings of stars are associated with previously known satellites, and among these is NGC 5466, a distant (16 kpc) globular cluster. NGC 5466 reportedly possesses a long stellar stream, although no individual members of the stream have previously been identified. Using both BHBs and more numerous red giant branch stars cross-matched to $textit{Gaia}$ Data Release 2, we identify extended tidal tails from NGC 5466 that are both spatially and kinematically coherent. Interestingly, we find that this stream does not follow the same path as the previous detection at large distances from the cluster. We trace the stream across 31$^{circ}$ of sky and show that it exhibits a very strong distance gradient ranging from 10 $<$ R$_{helio}$ $<$ 30 kpc. We compare our observations to simple dynamical models of the stream and find that they are able to broadly reproduce the overall path and kinematics. The fact that NGC 5466 is so distant, traces a wide range of Galactic distances, has an identified progenitor, and appears to have recently had an interaction with the Galaxys disk, makes it a unique test-case for dynamical modelling of the Milky Way.
Studying our Galaxy, the Milky Way (MW), gives us a close-up view of the interplay between cosmology, dark matter, and galaxy formation. In the next decade our understanding of the MWs dynamics, stellar populations, and structure will undergo a revolution thanks to planned and proposed astrometric, spectroscopic and photometric surveys, building on recent advances by the Gaia astrometric survey. Together, these new efforts will measure three-dimensional positions and velocities and numerous chemical abundances for stars to the MWs edge and well into the Local Group, leading to a complete multidimensional view of our Galaxy. Studies of the multidimensional Milky Way beyond the Gaia frontier---from the edge of the Galactic disk to the edge of our Galaxys dark matter halo---will unlock new scientific advances across astrophysics, from constraints on dark matter to insights into galaxy formation.
Stellar streams record the accretion history of their host galaxy. We present a set of simulated streams from disrupted dwarf galaxies in 13 cosmological simulations of Milky Way (MW)-mass galaxies from the FIRE-2 suite at $z=0$, including 7 isolated Milky Way-mass systems and 6 hosts resembling the MW-M31 pair (full dataset at: https://flathub.flatironinstitute.org/sapfire). In total, we identify 106 simulated stellar streams, with no significant differences in the number of streams and masses of their progenitors between the isolated and paired environments. We resolve simulated streams with stellar masses ranging from $sim 5times10^5$ up to $sim 10^{9} M_odot$, similar to the mass range between the Orphan and Sagittarius streams in the MW. We confirm that present-day simulated satellite galaxies are good proxies for stellar stream progenitors, with similar properties including their stellar mass function, velocity dispersion, [Fe/H] and [$alpha$/H] evolution tracks, and orbital distribution with respect to the galactic disk plane. Each progenitors lifetime is marked by several important timescales: its infall, star-formation quenching, and stream-formation times. We show that the ordering of these timescales is different between progenitors with stellar masses higher and lower than $sim 2times10^6 M_odot$. Finally, we show that the main factor controlling the rate of phase-mixing, and therefore fading, of tidal streams from satellite galaxies in MW-mass hosts is non-adiabatic evolution of the host potential. Other factors commonly used to predict phase-mixing timescales, such as progenitor mass and orbital circularity, show virtually no correlation with the number of dynamical times required for a stream to become phase-mixed.
The first and second moments of stellar velocities encode important information about the formation history of the Galactic halo. However, due to the lack of tangential motion and inaccurate distances of the halo stars, the velocity moments in the Galactic halo have largely remained known unknowns. Fortunately, our off-centric position within the Galaxy allows us to estimate these moments in the galacto-centric frame using the observed radial velocities of the stars alone. We use these velocities coupled with the Hierarchical Bayesian scheme, which allows easy marginalisation over the missing data (the proper-motion, and uncertainty-free distance and line-of-sight velocity), to measure the velocity dispersions, orbital anisotropy ($beta$) and streaming motion ($v_{rm rot}$) of the halo main-sequence turn-off (MSTO) and K-giant (KG) stars in the inner stellar halo (r $lesssim 15$ kpc). We study the metallicity bias in kinematics of the halo stars and observe that the comparatively metal-rich ([Fe/H]$>-1.4$) and the metal-poor ([Fe/H]$leq - 1.4$) MSTO samples show a clear systematic difference in $v_{rm rot} sim 20-40$ km s$^{-1}$, depending on how restrictive the spatial cuts to cull the disk contamination are. The bias is also detected in KG samples but with less certainty. Both MSTO and KG populations suggest that the inner stellar halo of the Galaxy is radially biased i.e. $sigma_r>sigma_theta$ or $sigma_phi$ and $beta simeq 0.5$. The apparent metallicity contrariety in the rotation velocity among the halo sub-populations supports the co-existence of multiple populations in the galactic halo that may have formed through distinct formation scenarios, i.e. in-situ versus accretion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا