Do you want to publish a course? Click here

Correlation-induced self-doping in intercalated iron-pnictide superconductor Ba2Ti2Fe2As4O

106   0   0.0 ( 0 )
 Added by Junzhang Ma
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic structure of the intercalated iron-based superconductor Ba2Ti2Fe2As4O (Tc - 21.5 K) has been investigated by using angle-resolved photoemission spectroscopy and combined local density approximation and dynamical mean field theory calculations. The electronic states near the Fermi level are dominated by both the Fe 3d and Ti 3d orbitals, indicating that the spacing layers separating different FeAs layers are also metallic. By counting the enclosed volumes of the Fermi surface sheets, we observe a large self-doping effect, i.e. 0.25 electrons per unit cell are transferred from the FeAs layer to the Ti2As2O layer, leaving the FeAs layer in a hole-doped state. This exotic behavior is successfully reproduced by our dynamical mean field calculations, in which the self-doping effect is attributed to the electronic correlations in the Fe 3d shell. Our work provides an alternative route of effective doping without element substitution for iron-based superconductors.



rate research

Read More

Charge doping of iron-pnictide superconductors leads to collective pinning of flux vortices, whereas isovalent doping does not. Moreover, flux pinning in the charge-doped compounds is consistently described by the mean-free path fluctuations introduced by the dopant atoms, allowing for the extraction of the elastic quasiparticle scattering rate. The absence of scattering by dopant atoms in isovalently doped BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ is consistent with the observation of a linear temperature dependence of the low-temperature penetration depth in this material.
126 - K. Igawa , H. Okada , H. Takahashi 2008
Electrical resistivity under high pressure have been measured on nominally pure SrFe2As2 up to 14 GPa. The resistivity drop appeared with increasing pressure, and we clearly observed zero resistivity. The maximum of superconducting transition temperature (Tc) is 38 K. The value is corresponding to the one of optimally doping AFe2As2 (A=Sr, Ba) system with K+ ions at the A2+ site.
390 - Z. Deng , X. C. Wang , Q.Q. Liu 2009
A new iron pnictide LiFeP superconductor was found. The compound crystallizes into a Cu2Sb structure containing an FeP layer showing superconductivity with maximum Tc of 6K. This is the first 111 type iron pnictide superconductor containing no arsenic. The new superconductor is featured with itinerant behavior at normal state that could helpful to understand the novel superconducting mechanism of iron pnictide compounds.
88 - Jia Yu , Tong Liu , Bo-Jin Pan 2016
We report the discovery and characterization of a novel 112-type iron pnictide EuFeAs2, with La-doping induced superconductivity in a series of Eu1-xLaxFeAs2. The polycrystalline samples were synthesized through solid state reaction method only within a very narrow temperature window around 1073 K. Small single crystals were also grown from a flux method with the size about 100 um. The crystal structure was identified by single crystal X-ray diffraction analysis as a monoclinic structure with space group of P21/m. From resistivity and magnetic susceptibility measurements, we found that the parent compound EuFeAs2 shows a Fe2+ related antiferromagnetic/structural phase transition near 110 K and a Eu2+ related antiferromagnetic phase transition near 40 K. La doping suppressed the both phase transitions and induced superconducting transition with a Tc ~ 11 K for Eu0.85La0.15FeAs2.
125 - Andreas Heimes , Roland Grein , 2010
The pairing mechanism in the iron-pnictide superconductors is still unknown. However, similarities to the cuprate high-temperature superconductors suggest that a similar mechanism may be at work. Recently, careful experimental studies of the spin excitation spectrum revealed, like in the cuprates, a strong temperature dependence in the normal state and a resonance feature in the superconducting state. Motivated by these findings, we develop a model of electrons interacting with a temperature dependent magnetic excitation spectrum based on these experimental observations. We apply it to analyse angle resolved photoemission and tunnelling spectra in Ba{1-x}KxFe2As2. We reproduce in quantitative agreement with experiment a renormalisation of the quasiparticle dispersion both in the normal and the superconducting state, and the dependence of the quasiparticle linewidth on binding energy. We estimate the strength of the coupling between electronic and spin excitations. Our findings support the possibility of a pairing mechanism based dominantly on such a coupling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا