Do you want to publish a course? Click here

Pressure-induced superconductivity in Iron pnictide compound SrFe2As2

134   0   0.0 ( 0 )
 Added by Kazumi Igawa
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electrical resistivity under high pressure have been measured on nominally pure SrFe2As2 up to 14 GPa. The resistivity drop appeared with increasing pressure, and we clearly observed zero resistivity. The maximum of superconducting transition temperature (Tc) is 38 K. The value is corresponding to the one of optimally doping AFe2As2 (A=Sr, Ba) system with K+ ions at the A2+ site.



rate research

Read More

Bi2Te3 compound has been theoretically predicted (1) to be a topological insulator, and its topologically non-trivial surface state with a single Dirac cone has been observed in photoemission experiments (2). Here we report that superconductivity (Tc^~3K) can be induced in Bi2Te3 as-grown single crystal (with hole-carriers) via pressure. The first-principles calculations show that the electronic structure under pressure remains to be topologically nontrivial, and the Dirac-type surface states can be well distinguished from bulk states at corresponding Fermi level. The proximity effect between superconducting bulk states and Dirac-type surface state could generate Majorana fermions on the surface. We also discuss the possibility that the bulk state could be a topological superconductor.
A series of high-pressure resistivity measurements on single crystals of TbTe3 reveal a complex phase diagram involving the interplay of superconducting, antiferromagnetic and charge density wave orders. The onset of superconductivity reaches a maximum of ~ 3.5 K (onset) near 75 kbar.
While the layered 122 iron arsenide superconductors are highly anisotropic, unconventional, and exhibit several forms of electronic orders that coexist or compete with superconductivity in different regions of their phase diagrams, we find in the absence of iron in the structure that the superconducting characteristics of the end member BaPd2As2 are surprisingly conventional. Here we report on complementary measurements of specific heat, magnetic susceptibility, resistivity measurements, Andreev spectroscopy, and synchrotron high pressure x-ray diffraction measurements supplemented with theoretical calculations for BaPd2As2. Its superconducting properties are completely isotropic as demonstrated by the critical fields, which do not depend on the direction of the applied field. Under the application of high pressure, Tc is linearly suppressed, which is the typical behavior of classical phonon-mediated superconductors with some additional effect of a pressure-induced decrease in the electronic density of states and the electron-phonon coupling parameters. Structural changes in the layered BaPd2As2 have been studied by means of angle-dispersive diffraction in a diamond-anvil cell. At 12 GPa and 24.2 GPa we observed pressure induced lattice distortions manifesting as the discontinuity and, hence discontinuity in the Birch-Murnaghan equation of state. The bulk modulus is B0=40(6) GPa below 12 GPa and B0=142(3) GPa below 27.2 GPa.
All the iron-based superconductors identified to date share a square lattice composed of Fe atoms as a common feature, despite having different crystal structures. In copper-based materials, the superconducting phase emerges not only in square lattice structures but also in ladder structures. Yet iron-based superconductors without a square lattice motif have not been found despite being actively sought out. Here, we report the discovery of pressure-induced superconductivity in the iron-based spin-ladder material BaFe2S3, a Mott insulator with striped-type magnetic ordering below ~120 K. On the application of pressure this compound exhibits a metal-insulator transition at about 11 GPa, followed by the appearance of superconductivity below Tc = 14 K, right after the onset of the metallic phase. Our findings indicate that iron-based ladder compounds represent promising material platforms, in particular for studying the fundamentals of iron-based superconductivity.
The pressure effects on the antiferromagentic orders in iron-based ladder compounds CsFe$_2$Se$_3$ and BaFe$_2$S$_3$ have been studied using neutron diffraction. With identical crystal structure and similar magnetic structures, the two compounds exhibit highly contrasting magnetic behaviors under moderate external pressures. In CsFe$_2$Se$_3$ the ladders are brought much closer to each other by pressure, but the stripe-type magnetic order shows no observable change. In contrast, the stripe order in BaFe$_2$S$_3$, undergoes a quantum phase transition where an abrupt increase of N$acute{e}$el temperature by more than 50$%$ occurs at about 1 GPa, accompanied by a jump in the ordered moment. With its spin structure unchanged, BaFe$_2$S$_3$ enters an enhanced magnetic phase that bears the characteristics of an orbital selective Mott phase, which is the true neighbor of superconductivity emerging at higher pressures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا