Do you want to publish a course? Click here

Lossless Polariton Solitons

162   0   0.0 ( 0 )
 Added by Stephen Shipman
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Photons and excitons in a semiconductor microcavity interact to form exciton-polariton condensates. These are governed by a nonlinear quantum-mechanical system involving exciton and photon wavefunctions. We calculate all non-traveling harmonic soliton solutions for the one-dimensional lossless system. There are two frequency bands of bright solitons when the inter-exciton interactions produce an attractive nonlinearity and two frequency bands of dark solitons when the nonlinearity is repulsive. In addition, there are two frequency bands for which the exciton wavefunction is discontinuous at its symmetry point, where it undergoes a phase jump of pi. A band of continuous dark solitons merges with a band of discontinuous dark solitons, forming a larger band over which the soliton far-field amplitude varies from zero to infinity; the discontinuity is initiated when the operating frequency exceeds the free exciton frequency. The far fields of the solitons in the lowest and highest frequency bands (one discontinuous and one continuous dark) are linearly unstable, whereas the other four bands have linearly stable far fields, including the merged band of dark solitons.



rate research

Read More

We study the dynamics of dark solitons in an incoherently pumped exciton-polariton condensate by means of a system composed by a generalized open-dissipative Gross-Pitaevskii equation for the polaritons wavefunction and a rate equation for the exciton reservoir density. Considering a perturbative regime of sufficiently small reservoir excitations, we use the reductive perturbation method, to reduce the system to a Korteweg-de Vries (KdV) equation with linear loss. This model is used to describe the analytical form and the dynamics of dark solitons. We show that the polariton field supports decaying dark soliton solutions with a decay rate determined analytically in the weak pumping regime. We also find that the dark soliton evolution is accompanied by a shelf, whose dynamics follows qualitatively the effective KdV picture.
183 - M. Sich , F. Fras , J. K. Chana 2013
We report on the spin properties of bright polariton solitons supported by an external pump to compensate losses. We observe robust circularly polarised solitons when a circularly polarised pump is applied, a result attributed to phase synchronisation between nondegenerate TE and TM polarised polariton modes at high momenta. For the case of a linearly polarised pump either s+ or s- circularly polarised bright solitons can be switched on in a controlled way by a s+ or s- writing beam respectively. This feature arises directly from the widely differing interaction strengths between co- and cross-circularly polarised polaritons. In the case of orthogonally linearly polarised pump and writing beams, the soliton emission on average is found to be unpolarised, suggesting strong spatial evolution of the soliton polarisation, a conclusion supported by polarisation correlation measurements. The observed results are in agreement with theory, which predicts stable circularly polarised solitons and unstable linearly polarised solitons resulting in spatial evolution of their polarisation.
We study solitons in the two-dimensional defocusing nonlinear Schroedinger equation with the spatio-temporal modulation of the external potential. The spatial modulation is due to a square lattice; the resulting macroscopic diffraction is rotationally symmetric in the long-wavelength limit but becomes anisotropic for shorter wavelengths. Anisotropic solitons -- solitons with the square (x,y)-geometry -- are obtained both in the original nonlinear Schroedinger model and in its averaged amplitude equation.
We demonstrate a possibility of the creation of stable optical solitons combining one continuous and one discrete coordinate, with embedded vorticity, in an array of planar waveguides with intrinsic cubic-quintic nonlinearity. The same system may be realized in terms of the spatiotemporal light propagation in an array of tunnel-coupled optical fibers with the cubic-quintic nonlinearity. In contrast with zero-vorticity states, semidiscrete vortex solitons do not exist without the quintic term in the nonlinearity. Two types of the solitons, emph{viz.}, intersite- and onsite-centered ones (IC and OC, respectively), with even and odd numbers $N$ of actually excited sites in the discrete direction, are identified. We consider the modes carrying the embedded vorticity $S=1$ and $2$. In accordance with their symmetry, the vortex solitons of the OC type exhibit an intrinsic core, while the IC solitons with a small $N$ may have a coreless structure. Facilitating their creation in the experiment, the modes reported in the present work may be much more compact states than their counterparts considered in other systems, and they feature strong anisotropy. They can be set in motion in the discrete direction, provided that the coupling constant exceeds a certain minimum value. Collisions between moving vortex solitons are considered too.
Spatial solitons can exist in various kinds of nonlinear optical resonators with and without amplification. In the past years different types of these localized structures such as vortices, bright, dark solitons and phase solitons have been experimentally shown to exist. Many links appear to exist to fields different from optics, such as fluids, phase transitions or particle physics. These spatial resonator solitons are bistable and due to their mobility suggest schemes of information processing not possible with the fixed bistable elements forming the basic ingredient of traditional electronic processing. The recent demonstration of existence and manipulation of spatial solitons in emiconductor microresonators represents a step in the direction of such optical parallel processing applications. We review pattern formation and solitons in a general context, show some proof of principle soliton experiments on slow systems, and describe in more detail the experiments on semiconductor resonator solitons which are aimed at applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا