Do you want to publish a course? Click here

Comment on Measurement of 2- and 3-nucleon short range correlation probabilities in nuclei

100   0   0.0 ( 0 )
 Added by Douglas Higinbotham
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Measurement of 2- and 3-nucleon short range correlation probabilities in nuclei claimed to observe plateaus in the inclusive A/3He (e,e) ratios in the xB > 2 region; yet, a subsequent measurement at a higher momentum transfer did not observe xB > 2 plateaus. Herein we comment on a possible experimental explanation for this discrepancy.



rate research

Read More

91 - K. S. Egiyan 2005
The ratios of inclusive electron scattering cross sections of He4, C12 and Fe56 to He3 have been measured at 1 < x_B < 3. At Q^2 > 1.4 GeV^2, the ratios exhibit two separate plateaus, at 1.5 < x_B < 2 and at x_B > 2.25. This pattern is predicted by models that include 2- and 3-nucleon short-range correlations (SRC). Relative to A=3, the per-nucleon probabilities of 3-nucleon SRC are 2.3, 3.2, and 4.6 times larger for A=4, 12 and 56. This is the first measurement of 3-nucleon SRC probabilities in nuclei.
75 - Z. Ye , P. Solvignon , D. Nguyen 2017
We present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/3He cross section ratio is observed to be both x and Q2 independent for 1.5 < x < 2, confirming the dominance of two- nucleon (2N) short-range correlations (SRCs). For x > 2, our data do not support a previous claim of three-nucleon (3N) correlation dominance. While contributions beyond those from stationary 2N- SRCs are observed, our data show that isolating 3N-SRCs is more complicated than for 2N-SRCs.
133 - M. Alvioli 2012
Universality of short range correlations has been investigated both in coordinate and in momentum space, by means of one-and two-body densities and momentum distributions. In this contribution we discuss one- and two-body momentum distributions across a wide range of nuclei and their common features which can be ascribed to the presence of short range correlations. Calculations for few-body nuclei, namely 3He and 4He, have been performed using exact wave functions obtained with Argonne nucleon-nucleon interactions, while the linked cluster expansion technique is used for medium-heavy nuclei. The center of mass motion of a nucleon-nucleon pair in the nucleus, embedded in the full two-body momentum distribution n_NN(krel,KCM), is shown to exhibit the universal behavior predicted by the two-nucleon correlation model, in which the nucleon-nucleon pair moves inside the nucleus as a deuteron in a mean-field. Moreover, the deuteron-like spin-isospin (ST)=(10) contribution to the pn two-body momentum distribution is obtained, and shown to exactly scale to the deuteron momentum distribution. Universality of correlations in two-body distributions is cast onto the one-body distribution n(k1), obtained by integration of the two-body n_NN(k1, k2): in particular, the high momentum part of n(k1) exhibits the same pattern for all considered nuclei, in favor of a universal character of the short range structure of the nuclear wave function. Perspectives of this work, namely the calculation of reactions involving light and complex nuclei with realistic wave functions and effects of Final State Interactions (FSI), investigated by means of distorted momentum distributions within the Glauber multiple scattering approach, are eventually discussed.
By analyzing recent microscopic many-body calculations of few-nucleon systems and complex nuclei performed by different groups in terms of realistic nucleon-nucleon (NN) interactions, it is shown that NN short-range correlations (SRCs) have a universal character, in that the correlation hole that they produce in nuclei appears to be almost A-independent and similar to the correlation hole in the deuteron. The correlation hole creates high-momentum components, missing in a mean-field (MF) description and exhibiting several scaling properties and a peculiar spin-isospin structure. In particular, the momentum distribution of a pair of nucleons in spin-isospin state $(ST)=(10)$, depending upon the pair relative ($k_{rel}$) and center-of-mass (c.m.) ($K_{c.m.}$) momenta, as well as upon the angle $Theta$ between them, exhibits a remarkable property: in the region $k_{rel}gtrsim 2,fm^{-1}$ and $K_{c.m.}lesssim 1,fm^{-1} $, the relative and c.m. motions are decoupled and the two-nucleon momentum distribution factorizes into the deuteron momentum distribution and an A-dependent momentum distribution describing the c.m. motion of the pair in the medium. The impact of these and other properties of one- and two-nucleon momentum distributions on various nuclear phenomena, on ab initio calculations in terms of low-momentum interactions, as well as on ongoing experimental investigations of SRCs, are briefly commented.
We present new measurements of electron scattering from high-momentum nucleons in nuclei. These data allow an improved determination of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data also include the kinematic region where three-nucleon correlations are expected to dominate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا