Do you want to publish a course? Click here

Enhanced sputtering and incorporation of Mn in implanted GaAs and ZnO nanowires

84   0   0.0 ( 0 )
 Added by Andreas Johannes
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We simulated and experimentally investigated the sputter yield of ZnO and GaAs nanowires, which were implanted with energetic Mn ions at room temperature. The resulting thinning of the nanowires and the dopant concentration with increasing Mn ion fluency were measured by accurate scanning electron microscopy (SEM) and nano-X-Ray Fluorescence (nanoXRF) quantification, respectively. We observed a clear enhanced sputter yield for the irradiated nanowires compared to bulk, which is also corroborated by iradina simulations. These show a maximum if the ion range matches the nanowire diameter. As a consequence of the erosion thinning of the nanowire, the incorporation of the Mn dopants is also enhanced and increases non-linearly with increasing ion fluency.

rate research

Read More

The incorporation paths of Be in GaAs nanowires grown by the Ga-assisted method in molecular beam epitaxy has been investigated by electrical measurements of nanowires with different doping profiles. We find that Be atoms incorporate preferentially via the nanowire side facets, while the incorporation path through the Ga droplet is negligible. We also demonstrate that Be can diffuse into the volume of the nanowire giving an alternative incorporation path. This work is an important step towards controlled doping of nanowires and will serve as a help for designing future devices based on nanowires.
We have studied the structural, magnetic and electronic properties of Co-implanted ZnO (0001) films grown on Al2O3 (1120) substrates for different implantation doses and over a wide temperature range. Strong room temperature ferromagnetism is observed with magnetic parameters depending on the cobalt implantation dose. A detailed analysis of the structural and magnetic properties indicates that there are two magnetic phases in Co-implanted ZnO films. One is a ferromagnetic phase due to the formation of long range ferromagnetic ordering between implanted magnetic cobalt ions in the ZnO layer, the second one is a superparamagnetic phase, which occurs due to the formation of metallic cobalt clusters in the Al2O3 substrate. Using x-ray resonant magnetic scattering, the element specific magnetization of cobalt, oxygen and Zn was investigated. Magnetic dichroism was observed at the Co L2,3 edges as well as at the O K edge. In addition, the anomalous Hall effect is also observed, supporting the intrinsic nature of ferromagnetism in Co-implanted ZnO films.
Unexpected ferromagnetism has been observed in carbon doped ZnO films grown by pulsed laser deposition [Phys. Rev. Lett. 99, 127201 (2007)]. In this letter, we introduce carbon into ZnO films by ion implantation. Room temperature ferromagnetism has been observed. Our analysis demonstrates that (1) C-doped ferromagnetic ZnO can be achieved by an alternative method, i.e. ion implantation, and (2) the chemical involvement of carbon in the ferromagnetism is indirectly proven.
166 - Thomas Chanier 2005
We calculate the magnetic interactions between two nearest neighbor substitutional magnetic ions (Co or Mn) in ZnO by means of density functional theory and compare it with the available experimental data. Using the local spin density approximation we find a coexistence of ferro- and antiferromagnetic couplings for ZnO:Co, in contrast to experiment. For ZnO:Mn both couplings are antiferromagnetic but deviate quantitatively from measurement. That points to the necessity to account better for the strong electron correlation at the transition ion site which we have done by applying the LSDA+U method. We show that we have to distinguish two different nearest neighbor exchange integrals for the two systems in question which are all antiferromagnetic with values between -1.0 and -2.0 meV in reasonable agreement with experiment.
We present superparamagnetic clusters of structurally highly disordered Co-Zn-O created by high fluence Co ion implantation into ZnO (0001) single crystals at low temperatures. This secondary phase cannot be detected by common x-ray diffraction but is observed by high-resolution transmission electron microscopy. In contrast to many other secondary phases in a ZnO matrix it induces low-field anomalous Hall effect and thus is a candidate for magneto-electronics applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا