Do you want to publish a course? Click here

Decentralized Protection Strategies against SIS Epidemics in Networks

378   0   0.0 ( 0 )
 Added by Stojan Trajanovski
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Defining an optimal protection strategy against viruses, spam propagation or any other kind of contamination process is an important feature for designing new networks and architectures. In this work, we consider decentralized optimal protection strategies when a virus is propagating over a network through a SIS epidemic process. We assume that each node in the network can fully protect itself from infection at a constant cost, or the node can use recovery software, once it is infected. We model our system using a game theoretic framework and find pure, mixed equilibria, and the Price of Anarchy (PoA) in several network topologies. Further, we propose both a decentralized algorithm and an iterative procedure to compute a pure equilibrium in the general case of a multiple communities network. Finally, we evaluate the algorithms and give numerical illustrations of all our results.



rate research

Read More

To improve the accuracy of network-based SIS models we introduce and study a multilayer representation of a time-dependent network. In particular, we assume that individuals have their long-term (permanent) contacts that are always present, identifying in this way the first network layer. A second network layer also exists, where the same set of nodes can be connected by occasional links, created with a given probability. While links of the first layer are permanent, a link of the second layer is only activated with some probability and under the condition that the two nodes, connected by this link, are simultaneously participating to the temporary link. We develop a model for the SIS epidemic on this time-dependent network, analyze equilibrium and stability of the corresponding mean-field equations, and shed some light on the role of the temporal layer on the spreading process.
Stochastic epidemic models on networks are inherently high-dimensional and the resulting exact models are intractable numerically even for modest network sizes. Mean-field models provide an alternative but can only capture average quantities, thus offering little or no information about variability in the outcome of the exact process. In this paper we conjecture and numerically prove that it is possible to construct PDE-limits of the exact stochastic SIS epidemics on regular and ErdH{o}s-Renyi networks. To do this we first approximate the exact stochastic process at population level by a Birth-and-Death process (BD) (with a state space of $O(N)$ rather than $O(2^N)$) whose coefficients are determined numerically from Gillespie simulations of the exact epidemic on explicit networks. We numerically demonstrate that the coefficients of the resulting BD process are density-dependent, a crucial condition for the existence of a PDE limit. Extensive numerical tests for Regular and ErdH{o}s-Renyi networks show excellent agreement between the outcome of simulations and the numerical solution of the Fokker-Planck equations. Apart from a significant reduction in dimensionality, the PDE also provides the means to derive the epidemic outbreak threshold linking network and disease dynamics parameters, albeit in an implicit way. Perhaps more importantly, it enables the formulation and numerical evaluation of likelihoods for epidemic and network inference as illustrated in a worked out example.
One prominent security threat that targets unmanned aerial vehicles (UAVs) is the capture via GPS spoofing in which an attacker manipulates a UAVs global positioning system (GPS) signals in order to capture it. Given the anticipated widespread deployment of UAVs for various purposes, it is imperative to develop new security solutions against such attacks. In this paper, a mathematical framework is introduced for analyzing and mitigating the effects of GPS spoofing attacks on UAVs. In particular, system dynamics are used to model the optimal routes that the UAVs will adopt to reach their destinations. The GPS spoofers effect on each UAVs route is also captured by the model. To this end, the spoofers optimal imposed locations on the UAVs, are analytically derived; allowing the UAVs to predict their traveling routes under attack. Then, a countermeasure mechanism is developed to mitigate the effect of the GPS spoofing attack. The countermeasure is built on the premise of cooperative localization, in which a UAV can determine its location using nearby UAVs instead of the possibly compromised GPS locations. To better utilize the proposed defense mechanism, a dynamic Stackelberg game is formulated to model the interactions between a GPS spoofer and a drone operator. In particular, the drone operator acts as the leader that determines its optimal strategy in light of the spoofers expected response strategy. The equilibrium strategies of the game are then analytically characterized and studied through a novel proposed algorithm. Simulation results show that, when combined with the Stackelberg strategies, the proposed defense mechanism will outperform baseline strategy selection techniques in terms of reducing the possibility of UAV capture
Understanding how to effectively control an epidemic spreading on a network is a problem of paramount importance for the scientific community. The ongoing COVID-19 pandemic has highlighted the need for policies that mitigate the spread, without relying on pharmaceutical interventions, that is, without the medical assurance of the recovery process. These policies typically entail lockdowns and mobility restrictions, having thus nonnegligible socio-economic consequences for the population. In this paper, we focus on the problem of finding the optimum policies that flatten the epidemic curve while limiting the negative consequences for the society, and formulate it as a nonlinear control problem over a finite prediction horizon. We utilize the model predictive control theory to design a strategy to effectively control the disease, balancing safety and normalcy. An explicit formalization of the control scheme is provided for the susceptible--infected--susceptible epidemic model over a network. Its performance and flexibility are demonstrated by means of numerical simulations.
In this work, we use the spectral properties of graphons to study stability and sensitivity to noise of deterministic SIS epidemics over large networks. We consider the presence of additive noise in a linearized SIS model and we derive a noise index to quantify the deviation from the disease-free state due to noise. For finite networks, we show that the index depends on the adjacency eigenvalues of its graph. We then assume that the graph is a random sample from a piecewise Lipschitz graphon with finite rank and, using the eigenvalues of the associated graphon operator, we find an approximation of the index that is tight when the network size goes to infinity. A numerical example is included to illustrate the results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا