Do you want to publish a course? Click here

Optimal policy design to mitigate epidemics on networks using an SIS model

166   0   0.0 ( 0 )
 Added by Carlo Cenedese
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

Understanding how to effectively control an epidemic spreading on a network is a problem of paramount importance for the scientific community. The ongoing COVID-19 pandemic has highlighted the need for policies that mitigate the spread, without relying on pharmaceutical interventions, that is, without the medical assurance of the recovery process. These policies typically entail lockdowns and mobility restrictions, having thus nonnegligible socio-economic consequences for the population. In this paper, we focus on the problem of finding the optimum policies that flatten the epidemic curve while limiting the negative consequences for the society, and formulate it as a nonlinear control problem over a finite prediction horizon. We utilize the model predictive control theory to design a strategy to effectively control the disease, balancing safety and normalcy. An explicit formalization of the control scheme is provided for the susceptible--infected--susceptible epidemic model over a network. Its performance and flexibility are demonstrated by means of numerical simulations.



rate research

Read More

Stochastic epidemic models on networks are inherently high-dimensional and the resulting exact models are intractable numerically even for modest network sizes. Mean-field models provide an alternative but can only capture average quantities, thus offering little or no information about variability in the outcome of the exact process. In this paper we conjecture and numerically prove that it is possible to construct PDE-limits of the exact stochastic SIS epidemics on regular and ErdH{o}s-Renyi networks. To do this we first approximate the exact stochastic process at population level by a Birth-and-Death process (BD) (with a state space of $O(N)$ rather than $O(2^N)$) whose coefficients are determined numerically from Gillespie simulations of the exact epidemic on explicit networks. We numerically demonstrate that the coefficients of the resulting BD process are density-dependent, a crucial condition for the existence of a PDE limit. Extensive numerical tests for Regular and ErdH{o}s-Renyi networks show excellent agreement between the outcome of simulations and the numerical solution of the Fokker-Planck equations. Apart from a significant reduction in dimensionality, the PDE also provides the means to derive the epidemic outbreak threshold linking network and disease dynamics parameters, albeit in an implicit way. Perhaps more importantly, it enables the formulation and numerical evaluation of likelihoods for epidemic and network inference as illustrated in a worked out example.
When effective medical treatment and vaccination are not available, non-pharmaceutical interventions such as social distancing, home quarantine and far-reaching shutdown of public life are the only available strategies to prevent the spread of epidemics. Based on an extended SEIR (susceptible-exposed-infectious-recovered) model and continuous-time optimal control theory, we compute the optimal non-pharmaceutical intervention strategy for the case that a vaccine is never found and complete containment (eradication of the epidemic) is impossible. In this case, the optimal control must meet competing requirements: First, the minimization of disease-related deaths, and, second, the establishment of a sufficient degree of natural immunity at the end of the measures, in order to exclude a second wave. Moreover, the socio-economic costs of the intervention shall be kept at a minimum. The numerically computed optimal control strategy is a single-intervention scenario that goes beyond heuristically motivated interventions and simple flattening of the curve. Careful analysis of the computed control strategy reveals, however, that the obtained solution is in fact a tightrope walk close to the stability boundary of the system, where socio-economic costs and the risk of a new outbreak must be constantly balanced against one another. The model system is calibrated to reproduce the initial exponential growth phase of the COVID-19 pandemic in Germany.
Efficient testing and vaccination protocols are critical aspects of epidemic management. To study the optimal allocation of limited testing and vaccination resources in a heterogeneous contact network of interacting susceptible, recovered, and infected individuals, we present a degree-based testing and vaccination model for which we use control-theoretic methods to derive optimal testing and vaccination policies. Within our framework, we find that optimal intervention policies first target high-degree nodes before shifting to lower-degree nodes in a time-dependent manner. Using such optimal policies, it is possible to delay outbreaks and reduce incidence rates to a greater extent than uniform and reinforcement-learning-based interventions, particularly on certain scale-free networks.
Vector or pest control is essential to reduce the risk of vector-borne diseases or crop losses. Among the available biological control tools, the Sterile Insect Technique (SIT) is one of the most promising. However, SIT-control campaigns must be carefully planned in advance in order to render desirable outcomes. In this paper, we design SIT-control intervention programs that can avoid the real-time monitoring of the wild population and require to mass-rear a minimal overall number of sterile insects, in order to induce a local elimination of the wild population in the shortest time. Continuous-time release programs are obtained by applying an optimal control approach, and then laying the groundwork of more practical SIT-control programs consisting of periodic impulsive releases.
Motivated by the classical Susceptible-Infected-Recovered (SIR) epidemic models proposed by Kermack and Mckendrick, we consider a class of stochastic compartmental dynamical systems with a notion of partial ordering among the compartments. We call such systems unidirectional Mass Transfer Models (MTMs). We show that there is a natural way of interpreting a uni-directional MTM as a Survival Dynamical System (SDS) that is described in terms of survival functions instead of population counts. This SDS interpretation allows us to employ tools from survival analysis to address various issues with data collection and statistical inference of unidirectional MTMs. In particular, we propose and numerically validate a statistical inference procedure based on SDS-likelihoods. We use the SIR model as a running example throughout the paper to illustrate the ideas.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا