Do you want to publish a course? Click here

CARMA Large Area Star Formation Survey: Project Overview with Analysis of Dense Gas Structure and Kinematics in Barnard 1

142   0   0.0 ( 0 )
 Added by Shaye Storm
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N2H+, HCO+, and HCN (J=1-0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7 and spectral resolution near 0.16 km/s. We imaged ~150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N2H+ shows the strongest emission, with morphology similar to cool dust in the region, while HCO+ and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N2H+ velocity dispersions ranging from ~0.05-0.50 km/s across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new non-binary dendrogram algorithm is used to analyze dense gas structures in the N2H+ position-position-velocity (PPV) cube. The projected sizes of dendrogram-identified structures range from about 0.01-0.34 pc. Size-linewidth relations using those structures show that non-thermal line-of-sight velocity dispersion varies weakly with projected size, while rms variation in the centroid velocity rises steeply with projected size. Comparing these relations, we propose that all dense gas structures in Barnard 1 have comparable depths into the sky, around 0.1-0.2 pc; this suggests that over-dense, parsec-scale regions within molecular clouds are better described as flattened structures rather than spherical collections of gas. Science-ready PPV cubes for Barnard 1 molecular emission are available for download.



rate research

Read More

We performed a multi-wavelength study toward the filamentary cloud G47.06+0.26 to investigate the gas kinematics and star formation. We present the 12CO (J=1-0), 13CO (J=1-0) and C18O (J=1-0) observations of G47.06+0.26 obtained with the Purple Mountain Observation (PMO) 13.7 m radio telescope to investigate the detailed kinematics of the filament. The 12CO (J=1-0) and 13CO (J=1-0) emission of G47.06+0.26 appear to show a filamentary structure. The filament extends about 45 arcmin (58.1 pc) along the east-west direction. The mean width is about 6.8 pc, as traced by the 13CO (J=1-0) emission. G47.06+0.26 has a linear mass density of about 361.5 Msun/pc. The external pressure (due to neighboring bubbles and H II regions) may help preventing the filament from dispersing under the effects of turbulence. From the velocity-field map, we discern a velocity gradient perpendicular to G47.06+0.26. From the Bolocam Galactic Plane Survey (BGPS) catalog, we found nine BGPS sources in G47.06+0.26, that appear to these sources have sufficient mass to form massive stars. We obtained that the clump formation efficiency (CFE) is about 18% in the filament. Four infrared bubbles were found to be located in, and adjacent to, G47.06+0.26. Particularly, infrared bubble N98 shows a cometary structure. CO molecular gas adjacent to N98 also shows a very intense emission. H II regions associated with infrared bubbles can inject the energy to surrounding gas. We calculated the kinetic energy, ionization energy, and thermal energy of two H II regions in G47.06+0.26. From the GLIMPSE I catalog, we selected some Class I sources with an age of about 100000 yr, which are clustered along the filament. The feedback from the H II regions may cause the formation of a new generation of stars in filament G47.06+0.26.
We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from $sim10$--$40:rm{mu}rm{m}$. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary ground-based MIR observations and archival {it{Spitzer}} and {it{Herschel}} data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses $m_*sim10$--50$:M_odot$ accreting at $sim10^{-4}$--$10^{-3}:M_odot:{rm{yr}}^{-1}$ inside cores of initial masses $M_csim30$--500$:M_odot$ embedded in clumps with mass surface densities $Sigma_{rm{cl}}sim0.1$--3$:{rm{g:cm}^{-2}}$. Fitting Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates $sim100times$ smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.
We have carried out a survey of the NGC 2068 region in the Orion B molecular cloud using HARP on the JCMT, in the 13CO and C18O (J = 3-2) and H13CO+ (J = 4-3) lines. We used 13CO to map the outflows in the region, and matched them with previously defined SCUBA cores. We decomposed the C18O and H13CO+ into Gaussian clumps, finding 26 and 8 clumps respectively. The average deconvolved radii of these clumps is 6200 +/- 2000 AU and 3600 +/- 900 AU for C18O and H13CO+ respectively. We have also calculated virial and gas masses for these clumps, and hence determined how bound they are. We find that the C18O clumps are more bound than the H13CO+ clumps (average gas mass to virial mass ratio of 4.9 compared to 1.4). We measure clump internal velocity dispersions of 0.28 +/- 0.02 kms-1 and 0.27 +/- 0.04 kms-1 for C18O and H13CO+ respectively, although the H13CO+ values are heavily weighted by a majority of the clumps being protostellar, and hence having intrinsically greater linewidths. We suggest that the starless clumps correspond to local turbulence minima, and we find that our clumps are consistent with formation by gravoturbulent fragmentation. We also calculate inter-clump velocity dispersions of 0.39 +/- 0.05 kms-1 and 0.28 +/- 0.08 kms-1 for C18O and H13CO+ respectively. The velocity dispersions (both internal and external) for our clumps match results from numerical simulations of decaying turbulence in a molecular cloud. However, there is still insufficient evidence to conclusively determine the type of turbulence and timescale of star formation, due to the small size of our sample.
Dust grains play an important role in the synthesis of molecules in the interstellar medium, from the simplest species to complex organic molecules. How some of these solid-state molecules are converted into gas-phase species is still a matter of debate. Our aim is to directly compare ice and gas abundances of methanol (CH$_3$OH) and CO, and to investigate the relationship between ice and gas in low-mass protostellar envelopes. We present Submillimeter Array and Atacama Pathfinder EXperiment observations of gas-phase CH$_3$OH and CO towards the multiple protostellar system IRAS05417+0907 located in the B35A cloud. We use archival AKARI ice data toward the same target to calculate CH$_3$OH and CO gas-to-ice ratios. The CO isotopologues emissions are extended, whereas the CH$_3$OH emission is compact and traces the giant outflow emanating from IRAS05417+0907. A discrepancy between submillimeter dust emission and H$_2$O ice column density is found for B35A$-$4 and B35A$-$5, similar to what has previously been reported. B35A$-$2 and B35A$-$3 are located where the submillimeter dust emission peaks and show H$_2$O column densities lower than for B35A$-$4. The difference between the submillimeter continuum emission and the infrared H$_2$O ice observations suggests that the distributions of dust and H$_2$O ice differ around the young stellar objects in this dense cloud. The reason for this may be that the sources are located in different environments resolved by the interferometric observations: B35A$-$2, B35A$-$3 and in particular B35A$-$5 are situated in a shocked region plausibly affected by sputtering and heating impacting the submillimeter dust emission pattern, while B35A$-$4 is situated in a more quiescent part of the cloud. Gas and ice maps are essential to connect small-scale variations in the ice composition with large-scale astrophysical phenomena probed by gas observations.
The non-uniform distribution of gas and protostars in molecular clouds is caused by combinations of various physical processes that are difficult to separate. We explore this non-uniform distribution in the M17 molecular cloud complex that hosts massive star formation activity using the $^{12}$CO ($J=1-0$) and $^{13}$CO ($J=1-0$) emission lines obtained with the Nobeyama 45m telescope. Differences in clump properties such as mass, size, and gravitational boundedness reflect the different evolutionary stages of the M17-H{scriptsize II} and M17-IRDC clouds. Clumps in the M17-H{scriptsize II} cloud are denser, more compact, and more gravitationally bound than those in M17-IRDC. While M17-H{scriptsize II} hosts a large fraction of very dense gas (27%) that has column density larger than the threshold of $sim$ 1 g cm$^{-2}$ theoretically predicted for massive star formation, this very dense gas is deficient in M17-IRDC (0.46%). Our HCO$^+$ ($J=1-0$) and HCN ($J=1-0$) observations with the TRAO 14m telescope, { lqb trace all gas with column density higher than $3times 10^{22}$ cm$^{-2}$}, confirm the deficiency of high density ($gtrsim 10^5$ cm$^{-3}$) gas in M17-IRDC. Although M17-IRDC is massive enough to potentially form massive stars, its deficiency of very dense gas and gravitationally bound clumps can explain the current lack of massive star formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا