No Arabic abstract
In recent work, Chow, Huang, Li and Zhou introduced the study of Fokker-Planck equations for a free energy function defined on a finite graph. When $Nge 2$ is the number of vertices of the graph, they show that the corresponding Fokker-Planck equation is a system of $N$ nonlinear ordinary differential equations defined on a Riemannian manifold of probability distributions. The different choices for inner products on the space of probability distributions result in different Fokker-Planck equations for the same process. Each of these Fokker-Planck equations has a unique global equilibrium, which is a Gibbs distribution. In this paper we study the {em speed of convergence} towards global equilibrium for the solution of these Fokker-Planck equations on a graph, and prove that the convergence is indeed exponential. The rate as measured by the decay of the $L_2$ norm can be bound in terms of the spectral gap of the Laplacian of the graph, and as measured by the decay of (relative) entropy be bound using the modified logarithmic Sobolev constant of the graph. With the convergence result, we also prove two Talagrand-type inequalities relating relative entropy and Wasserstein metric, based on two different metrics introduced in [CHLZ] The first one is a local inequality, while the second is a global inequality with respect to the lower bound metric from [CHLZ].
We consider a Vlasov-Fokker-Planck equation governing the evolution of the density of interacting and diffusive matter in the space of positions and velocities. We use a probabilistic interpretation to obtain convergence towards equilibrium in Wasserstein distance with an explicit exponential rate. We also prove a propagation of chaos property for an associated particle system, and give rates on the approximation of the solution by the particle system. Finally, a transportation inequality for the distribution of the particle system leads to quantitative deviation bounds on the approximation of the equilibrium solution of the equation by an empirical mean of the particles at given time.
One way to define the concentration of measure phenomenon is via Talagrand inequalities, also called transportation-information inequalities. That is, a comparison of the Wasserstein distance from the given measure to any other absolutely continuous measure with finite relative entropy. Such transportation-information inequalities were recently established for some stochastic differential equations. Here, we develop a similar theory for some stochastic partial differential equations.
In the first part of this work, we consider second order supersymmetric differential operators in the semiclassical limit, including the Kramers-Fokker-Planck operator, such that the exponent of the associated Maxwellian $phi$ is a Morse function with two local minima and one saddle point. Under suitable additional assumptions of dynamical nature, we establish the long time convergence to the equilibrium for the associated heat semigroup, with the rate given by the first non-vanishing, exponentially small, eigenvalue. In the second part of the paper, we consider the case when the function $phi$ has precisely one local minimum and one saddle point. We also discuss further examples of supersymmetric operators, including the Witten Laplacian and the infinitesimal generator for the time evolution of a chain of classical anharmonic oscillators.
In this paper we study second order stochastic differential equations with measurable and density-distribution dependent coefficients. Through establishing a maximum principle for kinetic Fokker-Planck-Kolmogorov equations with distribution-valued inhomogeneous term, we show the existence of weak solutions under mild assumptions. Moreover, by using the Holder regularity estimate obtained recently in cite{GIMV19}, we also show the well-posedness of generalized martingale problems when diffusion coefficients only depend on the position variable (not necessarily continuous). Even in the non density-distribution dependent case, it seems that this is the first result about the well-posedness of SDEs with measurable diffusion coefficients.
This article considers the eigenvalue problem for the Sturm-Liouville problem including $p$-Laplacian begin{align*} begin{cases} left(vert uvert^{p-2}uright)+left(lambda+r(x)right)vert uvert ^{p-2}u=0,,, xin (0,pi_{p}), u(0)=u(pi_{p})=0, end{cases} end{align*} where $1<p<infty$, $pi_{p}$ is the generalized $pi$ given by $pi_{p}=2pi/left(psin(pi/p)right)$, $rin C[0,pi_{p}]$ and $lambda<p-1$. Sharp Lyapunov-type inequalities, which are necessary conditions for the existence of nontrivial solutions of the above problem are presented. Results are obtained through the analysis of variational problem related to a sharp Sobolev embedding and generalized trigonometric and hyperbolic functions.