Do you want to publish a course? Click here

Semitransparency in interaction-free measurements

135   0   0.0 ( 0 )
 Added by Sebastian Thomas
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the effect of semitransparency in a quantum-Zeno-like interaction-free measurement setup, a quantum-physics based approach that might significantly reduce sample damage in imaging and microscopy. With an emphasis on applications in electron microscopy, we simulate the behavior of probe particles in an interaction-free measurement setup with semitransparent samples, and we show that the transparency of a sample can be measured in such a setup. However, such a measurement is not possible without losing (i.e., absorbing or scattering) probe particles in general, which causes sample damage. We show how the amount of lost particles can be minimized by adjusting the number of round trips through the setup, and we explicitly calculate the amount of lost particles in measurements which either aim at distinguishing two transparencies or at measuring an unknown transparency precisely. We also discuss the effect of the sample causing phase shifts in interaction-free measurements. Comparing the resulting loss of probe particles with a classical measurement of transparency, we find that interaction-free measurements only provide a benefit in two cases: first, if two semitransparent samples with a high contrast are to be distinguished, interaction-free measurements lose less particles than classical measurements by a factor that increases with the contrast. This implies that interaction-free measurements with zero loss are possible if one of the samples is perfectly transparent. A second case where interaction-free measurements outperform classical measurements is if three conditions are met: the particle source exhibits Poissonian number statistics, the number of lost particles cannot be measured, and the transparency is larger than approximately 1/2. In all other cases, interaction-free measurements lose as many probe particles as classical measurements or more.



rate research

Read More

In ``interaction free measurements, one typically wants to detect the presence of an object without touching it with even a single photon. One often imagines a bomb whose trigger is an extremely sensitive measuring device whose presence we would like to detect without triggering it. We point out that all such measuring devices have a maximum sensitivity set by the uncertainty principle, and thus can only determine whether a measurement is ``interaction free to within a finite minimum resolution. We further discuss exactly what can be achieved with the proposed ``interaction free measurement schemes.
The possibility of interaction-free measurements and counterfactual computations is a striking feature of quantum mechanics pointed out around 20 years ago. We implement such phenomena in actual 5-qubit, 15-qubit and 20-qubit IBM quantum computers by means of simple quantum circuits. The results are in general close to the theoretical expectations. For the larger circuits (with numerous gates and consequently larger errors) we implement a simple error mitigation procedure which improve appreciably the performance.
Although interference is a classical-wave phenomenon, the superposition principle, which underlies interference of individual particles, is at the heart of quantum physics. An interaction-free measurements (IFM) harnesses the wave-particle duality of single photons to sense the presence of an object via the modification of the interference pattern, which can be accomplished even if the photon and the object havent interacted with each other. By using the quantum Zeno effect, the efficiency of an IFM can be made arbitrarily close to unity. Here we report an on-chip realization of the IFM based on silicon photonics. We exploit the inherent advantages of the lithographically written waveguides: excellent interferometric phase stability and mode matching, and obtain multipath interference with visibility above 98%. We achieved a normalized IFM efficiency up to 68.2%, which exceeds the 50% limit of the original IFM proposal.
An interaction free evolving state of a closed bipartite system composed of two interacting subsystems is a generally mixed state evolving as if the interaction were a c-number. In this paper we find the characteristic equation of states possessing similar properties for a bipartite systems governed by a linear dynamical equation whose generator is sum of a free term and an interaction term. In particular in the case of a small system coupled to its environment, we deduce the characteristic equation of decoherence free states namely mixed states evolving as if the interaction term were effectively inactive. Several examples illustrate the applicability of our theory in different physical contexts.
Three different implementations of interaction-free measurements (IFMs) in solid-state nanodevices are discussed. The first one is based on a series of concatenated Mach-Zehnder interferometers, in analogy to optical-IFM setups. The second one consists of a single interferometer and concatenation is achieved in the time domain making use of a quantized electron emitter. The third implementation consists of an asymmetric Aharonov-Bohm ring. For all three cases we show that the presence of a dephasing source acting on one arm of the interferometer can be detected without degrading the coherence of the measured current. Electronic implementations of IFMs in nanoelectronics may play a fundamental role as very accurate and noninvasive measuring schemes for quantum devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا