Do you want to publish a course? Click here

Temporal Extension of Scale Pyramid and Spatial Pyramid Matching for Action Recognition

114   0   0.0 ( 0 )
 Added by Zhenzhong Lan
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Historically, researchers in the field have spent a great deal of effort to create image representations that have scale invariance and retain spatial location information. This paper proposes to encode equivalent temporal characteristics in video representations for action recognition. To achieve temporal scale invariance, we develop a method called temporal scale pyramid (TSP). To encode temporal information, we present and compare two methods called temporal extension descriptor (TED) and temporal division pyramid (TDP) . Our purpose is to suggest solutions for matching complex actions that have large variation in velocity and appearance, which is missing from most current action representations. The experimental results on four benchmark datasets, UCF50, HMDB51, Hollywood2 and Olympic Sports, support our approach and significantly outperform state-of-the-art methods. Most noticeably, we achieve 65.0% mean accuracy and 68.2% mean average precision on the challenging HMDB51 and Hollywood2 datasets which constitutes an absolute improvement over the state-of-the-art by 7.8% and 3.9%, respectively.



rate research

Read More

Recognition of human actions and associated interactions with objects and the environment is an important problem in computer vision due to its potential applications in a variety of domains. The most versatile methods can generalize to various environments and deal with cluttered backgrounds, occlusions, and viewpoint variations. Among them, methods based on graph convolutional networks that extract features from the skeleton have demonstrated promising performance. In this paper, we propose a novel Spatio-Temporal Pyramid Graph Convolutional Network (ST-PGN) for online action recognition for ergonomic risk assessment that enables the use of features from all levels of the skeleton feature hierarchy. The proposed algorithm outperforms state-of-art action recognition algorithms tested on two public benchmark datasets typically used for postural assessment (TUM and UW-IOM). We also introduce a pipeline to enhance postural assessment methods with online action recognition techniques. Finally, the proposed algorithm is integrated with a traditional ergonomic risk index (REBA) to demonstrate the potential value for assessment of musculoskeletal disorders in occupational safety.
In this technical report, we describe our solution to temporal action proposal (task 1) in ActivityNet Challenge 2019. First, we fine-tune a ResNet-50-C3D CNN on ActivityNet v1.3 based on Kinetics pretrained model to extract snippet-level video representations and then we design a Relation-Aware Pyramid Network (RapNet) to generate temporal multiscale proposals with confidence score. After that, we employ a two-stage snippet-level boundary adjustment scheme to re-rank the order of generated proposals. Ensemble methods are also been used to improve the performance of our solution, which helps us achieve 2nd place.
144 - Yang Du , Chunfeng Yuan , Bing Li 2018
Local features at neighboring spatial positions in feature maps have high correlation since their receptive fields are often overlapped. Self-attention usually uses the weighted sum (or other functions) with internal elements of each local feature to obtain its weight score, which ignores interactions among local features. To address this, we propose an effective interaction-aware self-attention model inspired by PCA to learn attention maps. Furthermore, since different layers in a deep network capture feature maps of different scales, we use these feature maps to construct a spatial pyramid and then utilize multi-scale information to obtain more accurate attention scores, which are used to weight the local features in all spatial positions of feature maps to calculate attention maps. Moreover, our spatial pyramid attention is unrestricted to the number of its input feature maps so it is easily extended to a spatio-temporal version. Finally, our model is embedded in general CNNs to form end-to-end attention networks for action classification. Experimental results show that our method achieves the state-of-the-art results on the UCF101, HMDB51 and untrimmed Charades.
Weakly supervised temporal action localization, which aims at temporally locating action instances in untrimmed videos using only video-level class labels during training, is an important yet challenging problem in video analysis. Many current methods adopt the localization by classification framework: first do video classification, then locate temporal area contributing to the results most. However, this framework fails to locate the entire action instances and gives little consideration to the local context. In this paper, we present a novel architecture called Cascaded Pyramid Mining Network (CPMN) to address these issues using two effective modules. First, to discover the entire temporal interval of specific action, we design a two-stage cascaded module with proposed Online Adversarial Erasing (OAE) mechanism, where new and complementary regions are mined through feeding the erased feature maps of discovered regions back to the system. Second, to exploit hierarchical contextual information in videos and reduce missing detections, we design a pyramid module which produces a scale-invariant attention map through combining the feature maps from different levels. Final, we aggregate the results of two modules to perform action localization via locating high score areas in temporal Class Activation Sequence (CAS). Extensive experiments conducted on THUMOS14 and ActivityNet-1.3 datasets demonstrate the effectiveness of our method.
Most state-of-the-art action feature extractors involve differential operators, which act as highpass filters and tend to attenuate low frequency action information. This attenuation introduces bias to the resulting features and generates ill-conditioned feature matrices. The Gaussian Pyramid has been used as a feature enhancing technique that encodes scale-invariant characteristics into the feature space in an attempt to deal with this attenuation. However, at the core of the Gaussian Pyramid is a convolutional smoothing operation, which makes it incapable of generating new features at coarse scales. In order to address this problem, we propose a novel feature enhancing technique called Multi-skIp Feature Stacking (MIFS), which stacks features extracted using a family of differential filters parameterized with multiple time skips and encodes shift-invariance into the frequency space. MIFS compensates for information lost from using differential operators by recapturing information at coarse scales. This recaptured information allows us to match actions at different speeds and ranges of motion. We prove that MIFS enhances the learnability of differential-based features exponentially. The resulting feature matrices from MIFS have much smaller conditional numbers and variances than those from conventional methods. Experimental results show significantly improved performance on challenging action recognition and event detection tasks. Specifically, our method exceeds the state-of-the-arts on Hollywood2, UCF101 and UCF50 datasets and is comparable to state-of-the-arts on HMDB51 and Olympics Sports datasets. MIFS can also be used as a speedup strategy for feature extraction with minimal or no accuracy cost.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا