Do you want to publish a course? Click here

Lambda-Lambda interaction from relativistic heavy-ion collisions

185   0   0.0 ( 0 )
 Added by Kenji Morita
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the two-particle intensity correlation function of $Lambda$ in relativistic heavy-ion collisions. We find that the behavior of the $LambdaLambda$ correlation function at small relative momenta is fairly sensitive to the interaction potential and collective flows. By comparing the results of different source functions and potentials, we explore the effect of intrinsic collective motions on the correlation function. We find that the recent STAR data gives a strong constraint on the scattering length and effective range of $LambdaLambda$ interaction as, $-1.8 mathrm{fm}^{-1} < 1/a_0 < -0.8 mathrm{fm}^{-1}$ and $3.5 mathrm{fm} < r_mathrm{eff} < 7 mathrm{fm}$, respectively,if $Lambda$ samples do not include feed-down contribution from long-lived particles. We find that feed-down correction for $Sigma^0$ decay reduces the sensitivity of the correlation function to the detail of the $LambdaLambda$ interaction. As a result, we obtain a weaker constraint $1/a_0 <-0.8$ fm$^{-1}$. Implication for the signal of existence of $H$-dibaryon is discussed. Comparison with the scattering parameters obtained from the double $Lambda$ hypernucleus may reveal in-medium effects in the $LambdaLambda$ interaction.



rate research

Read More

147 - Yu. B. Ivanov 2020
Predictions for the global polarization of $Lambda$ hyperons in Au+Au collisions at moderately relativistic collision energies, 2.4 $leqsqrt{s_{NN}}leq$ 11 GeV, are made. These are based on the thermodynamic approach to the global polarization incorporated into the model of the three-fluid dynamics. Centrality dependence of the polarization is studied. It is predicted that the polarization reaches a maximum or a plateau (depending on the equation of state and centrality) at $sqrt{s_{NN}}approx$ 3 GeV. It is found that the global polarization increases with increasing width of the rapidity window around the midrapidity.
We investigate the $LambdaLambda$ and $K^-p$ intensity correlations in high-energy heavy-ion collisions. First, we examine the dependence of the $LambdaLambda$ correlation on the $LambdaLambda$ interaction and the $LambdaLambda$ pair purity probability $lambda$. For small $lambda$, the correlation function needs to be suppressed by the $LambdaLambda$ interaction in order to explain the recently measured $LambdaLambda$ correlation data. By comparison, when we adopt the $lambda$ value evaluated from the experimentally measured $Sigma^0/Lambda$ ratio, the correlation function needs to be enhanced by the interaction. We demonstrate that these two cases correspond to the two analyses which gave opposite signs of the $LambdaLambda$ scattering length. Next, we discuss the $K^-p$ correlation function. By using the local $bar{K}N$ potential which reproduces the kaonic hydrogen data by SIDDHARTA, we obtain the $K^-p$ correlation function. We find that the $K^-p$ correlation can provide a complementary information with the $K^{-}p$ elastic scattering amplitude.
We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in textit{A}+textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($tau_{text{rel}}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $tau_{text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher $p_{T}$ particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.
We review integrated dynamical approaches to describe heavy ion reaction as a whole at ultrarelativistic energies. Since final observables result from all the history of the reaction, it is important to describe all the stages of the reaction to obtain the properties of the quark gluon plasma from experimental data. As an example of these approaches, we develop an integrated dynamical model, which is composed of a fully (3+1) dimensional ideal hydrodynamic model with the state-of-the-art equation of state based on lattice QCD, and subsequent hadronic cascade in the late stage. Initial conditions are obtained employing Monte Car
We develop for charmed hadron production in relativistic heavy-ion collisions a comprehensive coalescence model that includes an extensive set of $s$ and $p$-wave hadronic states as well as the strict energy-momentum conservation, which ensures the boost invariance of the coalescence probability and the thermal limit of the produced hadron spectrum. By combining our hadronization scheme with an advanced Langevin-hydrodynamics model that incorporates both elastic and inelastic energy loss of heavy quarks inside the dynamical quark-gluon plasma, we obtain a successful description of the $p_mathrm{T}$-integrated and differential $Lambda_c/D^0$ and $D_s/D^0$ ratios measured at RHIC and the LHC. We find that including the effect of radial flow of the medium is essential for describing the enhanced $Lambda_c/D^0$ ratio observed in relativistic heavy-ion collisions. We also find that the puzzling larger $Lambda_c/D^0$ ratio observed in Au+Au collisions at RHIC than in Pb+Pb collisions at the LHC is due to the interplay between the effects of the QGP radial flow and the charm quark transverse momentum spectrum at hadronization. Our study further suggests that charmed hadrons have larger sizes in medium than in vacuum.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا