Do you want to publish a course? Click here

Integrated Dynamical Approach to Relativistic Heavy Ion Collisions

221   0   0.0 ( 0 )
 Added by Tetsufumi Hirano
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We review integrated dynamical approaches to describe heavy ion reaction as a whole at ultrarelativistic energies. Since final observables result from all the history of the reaction, it is important to describe all the stages of the reaction to obtain the properties of the quark gluon plasma from experimental data. As an example of these approaches, we develop an integrated dynamical model, which is composed of a fully (3+1) dimensional ideal hydrodynamic model with the state-of-the-art equation of state based on lattice QCD, and subsequent hadronic cascade in the late stage. Initial conditions are obtained employing Monte Car



rate research

Read More

We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in textit{A}+textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($tau_{text{rel}}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $tau_{text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher $p_{T}$ particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.
252 - Chun Shen , Bjorn Schenke 2018
We present a fully three-dimensional model providing initial conditions for energy and conserved charge density distributions in heavy ion collisions at RHIC Beam Energy Scan (BES) collision energies. The model includes the dynamical deceleration of participating nucleons or valence quarks. It provides a realistic estimation of the initial baryon stopping during the early stage of collisions. We also present the implementation of the model with 3+1 dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial state model at proper times greater than the initial time for the hydrodynamic simulation. The importance of this dynamical initialization stage on hadronic flow observables at the RHIC BES is quantified.
In this work, the production of photons through binary scattering processes is investigated for equilibrated hadronic systems. More precisely, a non-equilibrium hadronic transport approach to describe relativistic heavy-ion collisions is benchmarked with respect to photon emission. Cross sections for photon production in $pi + rho to pi + gamma$ and $pi + pi to rho + gamma$ scattering processes are derived from an effective chiral field theory and implemented into the hadronic transport approach, SMASH (Simulating Many Accelerated Strongly-interacting Hadrons). The implementation is verified by systematically comparing the thermal photon rate to theoretical expectations. Further, the impact of form factors is discussed, scattering processes mediated by $omega$ mesons are found to contribute significantly to the total photon production. Several comparisons of the yielded photon rates are performed: to parametrizations of the very same rates, as used in hydrodynamic simulations, to previous works relying on different cross sections for the production of direct photons from the hadronic stage, and to partonic rates. Finally, the impact of considering the finite width of the $rho$ meson is investigated, where a significant enhancement of photon production in the low-energy region is observed. This benchmark is the first step towards a consistent treatment of photon emission in hybrid hydrodynamics+transport approaches and a genuine dynamical description.
We develop a new dynamical model for high energy heavy-ion collisions in the beam energy region of the highest net-baryon densities on the basis of non-equilibrium microscopic transport model JAM and macroscopic 3+1D hydrodynamics by utilizing a dynamical initialization method. In this model,dynamical fluidization of a system is controlled by the source terms of the hydrodynamic fields. In addition, time dependent core-corona separation of hot regions is implemented. We show that our new model describes multiplicities and mean transverse mass in heavy-ion collisions within a beam energy region of $3<sqrt{s_{NN}}<30$ GeV. Good agreement of the beam energy dependence of the $K^+/pi^+$ ratio is obtained, which is explained by the fact that a part of the system is not thermalized in our core-corona approach.
135 - M. Bleicher 2000
We investigate the baryonic contributions to the dilepton yield in high energy heavy ion collisions within the context of a transport model. The relative contribution of the baryonic and mesonic sources are examined. It is observed that most dominant among the baryonic channels is the decay of N*(1520) and mostly confined in the region below the rho peak. In a transport theory implementation we find the baryonic contribution to the lepton pair yield to be small.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا