Do you want to publish a course? Click here

Measurement of the drift field in the ARGONTUBE LAr TPC with 266~nm pulsed laser beams

144   0   0.0 ( 0 )
 Added by Igor Kreslo E.
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

ARGONTUBE is a liquid argon time projection chamber (LAr TPC) with a drift field generated in-situ by a Greinacher voltage multiplier circuit. We present results on the measurement of the drift-field distribution inside ARGONTUBE using straight ionization tracks generated by an intense UV laser beam. Our analysis is based on a simplified model of the charging of a multi-stage Greinacher circuit to describe the voltages on the field cage rings.



rate research

Read More

ARGONTUBE is a liquid argon time projection chamber (TPC) with an electron drift length of up to 5 m equipped with cryogenic charge-sensitive preamplifiers. In this work, we present results on its performance including a comparison of the new cryogenic charge-sensitive preamplifiers with the previously used room-temperature-operated charge preamplifiers.
In this paper we give a concise description of a liquid argon time projection chamber (LAr TPC) developed at Yale, and present results from its first calibration run with cosmic rays.
113 - A. Ereditato , C.C. Hsu , S. Janos 2013
The Liquid Argon Time Projection Chamber (LArTPC) is a prime type of detector for future large-mass neutrino observatories and proton decay searches. In this paper we present the design and operation, as well as experimental results from ARGONTUBE, a LArTPC being operated at the AEC-LHEP, University of Bern. The main goal of this detector is to prove the feasibility of charge drift over very long distances in liquid argon. Many other aspects of the LArTPC technology are also investigated, such as a voltage multiplier to generate high voltage in liquid argon (Greinacher circuit), a cryogenic purification system and the application of multi-photon ionization of liquid argon by a UV laser. For the first time, tracks induced by cosmic muons and UV laser beam pulses have been observed and studied at drift distances of up to 5m, the longest reached to date.
667 - H.Chen , J.Evans , J.Fried 2018
Short Baseline Near Detector (SBND), which is a 260-ton LAr TPC as near detector in Short Baseline Neutrino (SBN) program, consists of 11,264 TPC readout channels. As an enabling technology for noble liquid detectors in neutrino experiments, cold electronics developed for extremely low temperature (77K - 89K) decouples the electrode and cryostat design from the readout design. With front-end electronics integrated with detector electrodes, the noise is independent of the fiducial volume and about half as with electronics at room temperature. Digitization and signal multiplexing to high speed serial links inside cryostat result in large reduction in the quantity of cables (less outgassing) and the number of feed-throughs, therefore minimize the penetration and simplify the cryostat design. Being considered as an option for the TPC readout, several Commercial-Off-The-Shelf (COTS) ADC chips have been identified as good candidates for operation in cryogenic temperature after initial screening test. Because Hot Carrier Effects (HCE) degrades CMOS device lifetime, one candidate, ADI AD7274 fabricated in TSMC 350nm CMOS technology, of which lifetime at cryogenic temperature is studied. The lifetime study includes two phases, the exploratory phase and the validation phase. This paper describes the test method, test setup, observations in the exploratory phase and the validation phase. Based on the current test data, the preliminary lifetime projection of AD7274 is about 6.1 $times$ $10^6$ years at 2.5V operation at cryogenic temperature, which means the HCE degradation is negligible during the SBND service life.
The velocity of neutrons from a pulsed neutron source is well-defined as a function of their arrival time. Electromagnetic neutron accelerator/decelerator synchronized with the neutron time-of-flight is capable of selectively changing the neutron velocity and concentrating the velocity distribution. Possible enhancement of the neutron intensity at a specific neutron velocity by orders of magnitude is discussed together with an experimental design.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا