Do you want to publish a course? Click here

SIMPle Dark Matter: Self-Interactions and keV Lines

134   0   0.0 ( 0 )
 Added by Kimberly Boddy
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a simple supersymmetric hidden sector: pure SU(N) gauge theory. Dark matter is made up of hidden glueballinos with mass $m_X$ and hidden glueballs with mass near the confinement scale $Lambda$. For $m_X sim 1,text{TeV}$ and $Lambda sim 100,text{MeV}$, the glueballinos freeze out with the correct relic density and self-interact through glueball exchange to resolve small-scale structure puzzles. An immediate consequence is that the glueballino spectrum has a hyperfine splitting of order $Lambda^2 / m_X sim 10,text{keV}$. We show that the radiative decays of the excited state can explain the observed 3.5 keV X-ray line signal from clusters of galaxies, Andromeda, and the Milky Way.



rate research

Read More

Many particle physics models for dark matter self-interactions - motivated to address long-standing challenges to the collisionless cold dark matter paradigm - fall within the semi-classical regime, with interaction potentials that are long-range compared to the de Broglie wavelength for dark matter particles. In this work, we present a quantum mechanical derivation and new analytic formulas for the semi-classical momentum transfer and viscosity cross sections for self-interactions mediated by a Yukawa potential. Our results include the leading quantum corrections beyond the classical limit and allow for both distinguishable and identical dark matter particles. Our formulas supersede the well-known formulas for the momentum transfer cross section obtained from the classical scattering problem, which are often used in phenomenological studies of self-interacting dark matter. Together with previous approximation formulas for the cross section in the quantum regime, our new results allow for nearly complete analytic coverage of the parameter space for self-interactions with a Yukawa potential. We also discuss the phenomenological implications of our results and provide a new velocity-averaging procedure for constraining velocity-dependent self-interactions. Our results have been implemented in the newly released code CLASSICS.
We outline two important effects that are missing from most evaluations of the dark matter capture rate in neutron stars. As dark matter scattering with nucleons in the star involves large momentum transfer, nucleon structure must be taken into account via a momentum dependence of the hadronic form factors. In addition, due to the high density of neutron star matter, we should account for nucleon interactions rather than modeling the nucleons as an ideal Fermi gas. Properly incorporating these effects is found to suppress the dark matter capture rate by up to three orders of magnitude for the heaviest stars.
We present a novel mechanism for Sommerfeld enhancement for dark matter interactions without the need for light mediators. Considering a model for two-component scalar dark matter with a triple coupling, we find that there appears an $u$-channel resonance in dark matter elastic scattering. From the sum of the corresponding ladder diagrams, we obtain a Bethe-Salpeter equation with a delay term and identify the Sommerfeld factor for two-component dark matter from the effective Yukawa potential for the first time. We discuss the implications of our results for enhancing dark matter self-scattering and annihilation.
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
We study electroweak scale Dark Matter (DM) whose interactions with baryonic matter are mediated by a heavy anomalous $Z$. We emphasize that when the DM is a Majorana particle, its low-velocity annihilations are dominated by loop suppressed annihilations into the gauge bosons, rather than by p-wave or chirally suppressed annihilations into the SM fermions. Because the $Z$ is anomalous, these kinds of DM models can be realized only as effective field theories (EFTs) with a well-defined cutoff, where heavy spectator fermions restore gauge invariance at high energies. We formulate these EFTs, estimate their cutoff and properly take into account the effect of the Chern-Simons terms one obtains after the spectator fermions are integrated out. We find that, while for light DM collider and direct detection experiments usually provide the strongest bounds, the bounds at higher masses are heavily dominated by indirect detection experiments, due to strong annihilation into $W^+W^-$, $ZZ$, $Zgamma$ and possibly into $gg$ and $gammagamma$. We emphasize that these annihilation channels are generically significant because of the structure of the EFT, and therefore these models are prone to strong indirect detection constraints. Even though we focus on selected $Z$ models for illustrative purposes, our setup is completely generic and can be used for analyzing the predictions of any anomalous $Z$-mediated DM model with arbitrary charges.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا