Do you want to publish a course? Click here

Doping dependence of phase coherence between superconducting Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ grains

195   0   0.0 ( 0 )
 Added by Gunncheol Kim
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the present work, we report the new findings on the doping level dependence of the phase coherence between superconducting Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi-2212) grains. The experimental results from the strongly underdoped and overdoped regimes deviated from the expectation based on the doping level dependence of the superfluid density at $T$ = 0 K. These findings appear to be governed by interplay between competing orders inside the superconducting dome of cuprate superconductors. Two quantum critical points are likely to exist at the underdoped and overdoped regimes beneath the superconducting dome.



rate research

Read More

101 - Yu He , Su-Di Chen , Zi-Xiang Li 2020
Fluctuating superconductivity - vestigial Cooper pairing in the resistive state of a material - is usually associated with low dimensionality, strong disorder or low carrier density. Here, we report single particle spectroscopic, thermodynamic and magnetic evidence for persistent superconducting fluctuations in heavily hole-doped cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ ($T_c$ = 66~K) despite the high carrier density. With a sign-problem free quantum Monte Carlo calculation, we show how a partially flat band at ($pi$,0) can help enhance superconducting phase fluctuations. Finally, we discuss the implications of an anisotropic band structure on the phase-coherence-limited superconductivity in overdoped cuprates and other superconductors.
In cuprate superconductors, the doping of carriers into the parent Mott insulator induces superconductivity and various other phases whose characteristic temperatures are typically plotted versus the doping level $p$. In most materials, $p$ cannot be determined from the chemical composition, but it is derived from the superconducting transition temperature, $T_mathrm{c}$, using the assumption that $T_mathrm{c}$ dependence on doping is universal. Here, we present angle-resolved photoemission studies of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, cleaved and annealed in vacuum or in ozone to reduce or increase the doping from the initial value corresponding to $T_mathrm{c}=91$ K. We show that $p$ can be determined from the underlying Fermi surfaces and that $in-situ$ annealing allows mapping of a wide doping regime, covering the superconducting dome and the non-superconducting phase on the overdoped side. Our results show a surprisingly smooth dependence of the inferred Fermi surface with doping. In the highly overdoped regime, the superconducting gap approaches the value of $2Delta_0=(4pm1)k_mathrm{B}T_mathrm{c}$
103 - S. P. Zhao , X. B. Zhu , Y. F. Wei 2007
We report tunneling spectra of near optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ intrinsic Josephson junctions with area of 0.09 $mu$m$^2$, which avoid some fundamental difficulties in the previous tunneling experiments and allow a stable temperature-dependent measurement. A d-wave Eliashberg analysis shows that the spectrum at 4.2 K can be well fitted by considering electron couplings to a bosonic magnetic resonance mode and a broad high-energy continuum. Above $T_c$, the spectra show a clear pseudogap that persists up to 230 K, and a crossover can be seen indicating two different pseudogap phases existing above $T_c$. The intrinsic electron tunneling nature is discussed in the analysis.
The effects of structural supermodulation with the period $lambda approx26$ AA along the $b$-axis of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ have been observed in photoemission studies from the early days as the presence of diffraction replicas of the intrinsic electronic structure. Although predicted to affect the electronic structure of the Cu-O plane, the influence of supermodulation potential on Cu-O electrons has never been observed in photoemission. In the present study, we clearly see, for the first time, the effects on the Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ electronic structure - we observe a hybridization of the intrinsic bands with the supermodulation replica bands in the form of avoided crossings and a corresponding reconstruction of the Fermi surface. We estimate the hybridization gap, $2Delta_hsim25$ meV in the slightly underdoped samples. The hybridization weakens with doping and the anti-crossing can no longer be resolved in strongly overdoped samples. In contrast, the shadow replica, shifted by $(pi, pi)$, is found not to hybridize with the original bands within our detection limits.
We present a scanning tunneling spectroscopy study on quasiparticle states in vortex cores in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$. The energy of the observed vortex core states shows an approximately linear scaling with the superconducting gap in the region just outside the core. This clearly distinguishes them from conventional localized core states, and is a signature of the mechanism responsible for their discrete appearance in high-temperature superconductors. The energy scaling of the vortex core states also suggests a common nature of vortex cores in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ and YBa$_2$Cu$_3$O$_{7-delta}$. Finally, the observed vortex core states do not show any dependence on the applied magnetic field in the range from 1 to 6 T.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا