No Arabic abstract
The star formation histories (SFHs) of dwarf galaxies are thought to be emph{bursty}, with large -- order of magnitude -- changes in the star formation rate on timescales similar to O-star lifetimes. As a result, the standard interpretations of many galaxy observables (which assume a slowly varying SFH) are often incorrect. Here, we use the SFHs from hydro-dynamical simulations to investigate the effects of bursty SFHs on sample selection and interpretation of observables and make predictions to confirm such SFHs in future surveys. First, because dwarf galaxies star formation rates change rapidly, the mass-to-light ratio is also changing rapidly in both the ionizing continuum and, to a lesser extent, the non-ionizing UV continuum. Therefore, flux limited surveys are highly biased toward selecting galaxies in the emph{burst} phase and very deep observations are required to detect all dwarf galaxies at a given stellar mass. Second, we show that a $log_{10}[ u L_{ u}(1500{rm AA})/L_{{rm H}alpha}]>2.5$ implies a very recent quenching of star formation and can be used as evidence of stellar feedback regulating star formation. Third, we show that the ionizing continuum can be significantly higher than when assuming a constant SFH, which can affect the interpretation of nebular emission line equivalent widths and direct ionizing continuum detections. Finally, we show that a star formation rate estimate based on continuum measurements only (and not on nebular tracers such as the hydrogen Balmer lines) will not trace the rapid changes in star formation and will give the false impression of a star-forming main sequence with low dispersion.
At intermediate and high redshifts, measurements of galaxy star-formation rates are usually based on rest-frame ultraviolet (UV) data. A correction for dust attenuation, A_UV, is needed for these measurements. This correction is typically inferred from UV spectral slopes (beta) using an equation known as Meurers Relation. In this paper, we study this relation at a redshift of 1.5 using images and photometric measurements in the rest-frame UV (HST) through mid-infrared (Spitzer). It is shown that massive star-forming galaxies (above 10^10 Msun) have dust corrections that are dependent on their inclination to the line-of-sight. Edge-on galaxies have higher A_UV and infrared excess (IRX=L(IR)/L(UV)) than face-on galaxies at a given beta. Interestingly, dust corrections for low-mass star-forming galaxies do not depend on inclination. This is likely because more massive galaxies have more disk-like shapes/kinematics, while low-mass galaxies are more prolate and have more disturbed kinematics. To account for an inclination-dependent dust correction, a modified Meurers Relation is derived: A_UV=4.43+1.99 beta - 1.73 (b/a-0.67), where b/a is the galaxy axis ratio. This inclination-dependence of A_UV can be explained by a two-component model of the dust distribution inside galaxies. In such a model, the dust attenuation of edge-on galaxies has a higher contribution from a mixture component (dust uniformly mixed with stars in the diffuse interstellar medium), and a lower contribution from a birth cloud component (near-spherical dust shells surrounding young stars in H II regions) than that of face-on galaxies. The difference is caused by the larger path-lengths through disks at higher inclinations.
The dwarf galaxies of the Local Group are believed to be similar to the most abundant galaxies during the epoch of reionization (z>6). As a result of their proximity, there is a wealth of information that can be obtained about these galaxies; however, due to their low surface brightnesses, detecting their progenitors at high redshifts is challenging. We compare the physical properties of these dwarf galaxies to those of galaxies detected at high redshifts using Hubble Space Telescope and Spitzer observations and consider the promise of the upcoming James Webb Space Telescope on the prospects for detecting high redshift analogues of these galaxies.
We present here a three-dimesional hydrodynamical simulation for star formation. Our aim is to explore the effect of the metal-line cooling on the thermodynamics of the star-formation process. We explore the effect of changing the metallicty of the gas from $Z/Z_{odot}=10^{-4}$ to $Z/Z_{odot}=10^{-2}$. Furthermore, we explore the implications of using the observational abundance pattern of a CEMP-no star, which have been considered to be the missing second-generation stars, the so-called Pop. III.2 stars. In order to pursue our aim, we modelled the microphysics by employing the public astrochemistry package KROME, using a chemical network which includes sixteen chemical species (H, H$^{+}$, H$^{-}$, He, He$^{+}$, He$^{++}$, e$^{-}$, H$_{2}$, H$_{2}^{+}$, C, C$^{+}$, O, O$^{+}$, Si, Si$^{+}$, and Si$^{++}$). We couple KROME with the fully three-dimensional Smoothed-particle hydrodynamics (SPH) code GRADSPH. With this framework we investigate the collapse of a metal-enhanced cloud, exploring the fragmentation process and the formation of stars. We found that the metallicity has a clear impact on the thermodynamics of the collapse, allowing the cloud to reach the CMB temperature floor for a metallicity $Z/Z_{odot}=10^{-2}$, which is in agreement with previous work. Moreover, we found that adopting the abundance pattern given by the star SMSS J031300.36-670839.3 the thermodynamics behavior is very similar to simulations with a metallicity of $Z/Z_{odot}=10^{-2}$, due to the high carbon abundance. As long as only metal line cooling is considered, our results support the metallicity threshold proposed by previous works, which will very likely regulate the first episode of fragmentation and potentially determine the masses of the resulting star clusters.
We investigate the bursty star formation histories (SFHs) of dwarf galaxies using the distribution of log($L_{Halpha}/L_{UV}$) of 185 local galaxies. We expand on the work of Weisz et al. 2012 to consider a wider range of SFHs and stellar metallicities, and show that there are large degeneracies in a periodic, top-hat burst model. We argue that all galaxies of a given mass have similar SFHs and we can therefore include the $L_{Halpha}$ distributions (subtracting the median trend with stellar mass, referred to as $Delta text{log}(L_{Halpha})$) in our analyses. $Delta text{log}(L_{Halpha})$ traces the amplitude of the bursts, and log($L_{Halpha}/L_{UV}$) is a function of timescale, amplitude, and shape of the bursts. We examine the 2-dimensional distribution of these two indicators constrain the SFHs. We use exponentially rising/falling bursts to determine timescales ($e$-folding time, $tau$). We find that galaxies below $10^{7.5}$ M$_{odot}$ undergo large (amplitudes of $sim 100$) and rapid ($tau < 30$ Myr) bursts, while galaxies above $10^{8.5}$ M$_{odot}$ experience smaller (maximum amplitudes $sim 10$), slower ($tau gtrsim 300$ Myr) bursts. We compare to the FIRE-2 hydrodynamical simulations and find that the burst amplitudes agree with observations, but they are too rapid in more massive galaxies ($M_* > 10^8$ M$_{odot}$). Finally, we confirm that stochastic sampling of the stellar mass function can not reproduce the observed distributions unless the standard assumptions of cluster and stellar mass functions are changed. With the next generation of telescopes, measurements of $L_{UV}$ and $L_{Halpha}$ will become available for dwarf galaxies at high-redshift, enabling similar analyses of galaxies in the early universe.
We present an analysis of the $Rlesssim 1.5$ kpc core regions of seven simulated Milky Way mass galaxies, from the FIRE-2 (Feedback in Realistic Environments) cosmological zoom-in simulation suite, for a finely sampled period ($Delta t = 2.2$ Myr) of 22 Myr at $z approx 0$, and compare them with star formation rate (SFR) and gas surface density observations of the Milky Ways Central Molecular Zone (CMZ). Despite not being tuned to reproduce the detailed structure of the CMZ, we find that four of these galaxies are consistent with CMZ observations at some point during this 22 Myr period. The galaxies presented here are not homogeneous in their central structures, roughly dividing into two morphological classes; (a) several of the galaxies have very asymmetric gas and SFR distributions, with intense (compact) starbursts occurring over a period of roughly 10 Myr, and structures on highly eccentric orbits through the CMZ, whereas (b) others have smoother gas and SFR distributions, with only slowly varying SFRs over the period analyzed. In class (a) centers, the orbital motion of gas and star-forming complexes across small apertures ($R lesssim 150$pc, analogously $|l|<1^circ$ in the CMZ observations) contributes as much to tracers of star formation/dense gas appearing in those apertures, as the internal evolution of those structures does. These asymmetric/bursty galactic centers can simultaneously match CMZ gas and SFR observations, demonstrating that time-varying star formation can explain the CMZs low star formation efficiency.