No Arabic abstract
We present an analysis of the $Rlesssim 1.5$ kpc core regions of seven simulated Milky Way mass galaxies, from the FIRE-2 (Feedback in Realistic Environments) cosmological zoom-in simulation suite, for a finely sampled period ($Delta t = 2.2$ Myr) of 22 Myr at $z approx 0$, and compare them with star formation rate (SFR) and gas surface density observations of the Milky Ways Central Molecular Zone (CMZ). Despite not being tuned to reproduce the detailed structure of the CMZ, we find that four of these galaxies are consistent with CMZ observations at some point during this 22 Myr period. The galaxies presented here are not homogeneous in their central structures, roughly dividing into two morphological classes; (a) several of the galaxies have very asymmetric gas and SFR distributions, with intense (compact) starbursts occurring over a period of roughly 10 Myr, and structures on highly eccentric orbits through the CMZ, whereas (b) others have smoother gas and SFR distributions, with only slowly varying SFRs over the period analyzed. In class (a) centers, the orbital motion of gas and star-forming complexes across small apertures ($R lesssim 150$pc, analogously $|l|<1^circ$ in the CMZ observations) contributes as much to tracers of star formation/dense gas appearing in those apertures, as the internal evolution of those structures does. These asymmetric/bursty galactic centers can simultaneously match CMZ gas and SFR observations, demonstrating that time-varying star formation can explain the CMZs low star formation efficiency.
We present cosmological zoom-in hydro-dynamical simulations for the formation of disc galaxies, implementing dust evolution and dust promoted cooling of hot gas. We couple an improved version of our previous treatment of dust evolution, which adopts the two-size approximation to estimate the grain size distribution, with the MUPPI star formation and feedback sub-resolution model. Our dust evolution model follows carbon and silicate dust separately. To distinguish differences induced by the chaotic behaviour of simulations from those genuinely due to different simulation set-up, we run each model six times, after introducing tiny perturbations in the initial conditions. With this method, we discuss the role of various dust-related physical processes and the effect of a few possible approximations adopted in the literature. Metal depletion and dust cooling affect the evolution of the system, causing substantial variations in its stellar, gas and dust content. We discuss possible effects on the Spectral Energy Distribution of the significant variations of the size distribution and chemical composition of grains, as predicted by our simulations during the evolution of the galaxy. We compare dust surface density, dust-to-gas ratio and small-to-big grain mass ratio as a function of galaxy radius and gas metallicity predicted by our fiducial run with recent observational estimates for three disc galaxies of different masses. The general agreement is good, in particular taking into account that we have not adjusted our model for this purpose.
We apply the empirical galaxy--halo connection model UniverseMachine to dark matter-only zoom-in simulations of isolated Milky Way (MW)--mass halos along with their parent cosmological simulations. This application extends textsc{UniverseMachine} predictions into the ultra-faint dwarf galaxy regime ($ 10^{2},mathrm{M_{odot}} leqslant M_{ast} leqslant 10^{5},mathrm{M_{odot}}$) and yields a well-resolved stellar mass--halo mass (SMHM) relation over the peak halo mass range $10^8,mathrm{M_{odot}}$ to $10^{15},mathrm{M_{odot}}$. The extensive dynamic range provided by the zoom-in simulations allows us to assess specific aspects of dwarf galaxy evolution predicted by textsc{UniverseMachine}. In particular, although UniverseMachine is not constrained for dwarf galaxies with $M_* lesssim 10^{8},mathrm{M_{odot}}$, our predicted SMHM relation is consistent with that inferred for MW satellite galaxies at $z=0$ using abundance matching. However, UniverseMachine predicts that nearly all galaxies are actively star forming below $M_{ast}sim 10^{7},mathrm{M_{odot}}$ and that these systems typically form more than half of their stars at $zlesssim 4$, which is discrepant with the star formation histories of Local Group dwarf galaxies that favor early quenching. This indicates that the current UniverseMachine model does not fully capture galaxy quenching physics at the low-mass end. We highlight specific improvements necessary to incorporate environmental and reionization-driven quenching for dwarf galaxies, and provide a new tool to connect dark matter accretion to star formation over the full dynamic range that hosts galaxies.
Cosmological simulations of galaxies have typically produced too many stars at early times. We study the global and morphological effects of radiation pressure (RP) in eight pairs of high-resolution cosmological galaxy formation simulations. We find that the additional feedback suppresses star formation globally by a factor of ~2. Despite this reduction, the simulations still overproduce stars by a factor of ~2 with respect to the predictions provided by abundance matching methods for halos more massive than 5E11 Msun/h (Behroozi, Wechsler & Conroy 2013). We also study the morphological impact of radiation pressure on our simulations. In simulations with RP the average number of low mass clumps falls dramatically. Only clumps with stellar masses Mclump/Mdisk <= 5% are impacted by the inclusion of RP, and RP and no-RP clump counts above this range are comparable. The inclusion of RP depresses the contrast ratios of clumps by factors of a few for clump masses less than 5% of the disk masses. For more massive clumps, the differences between and RP and no-RP simulations diminish. We note however, that the simulations analyzed have disk stellar masses below about 2E10 Msun/h. By creating mock Hubble Space Telescope observations we find that the number of clumps is slightly reduced in simulations with RP. However, since massive clumps survive the inclusion of RP and are found in our mock observations, we do not find a disagreement between simulations of our clumpy galaxies and observations of clumpy galaxies. We demonstrate that clumps found in any single gas, stellar, or mock observation image are not necessarily clumps found in another map, and that there are few clumps common to multiple maps.
We investigate the differential effects of metal cooling and galactic stellar winds on the cosmological formation of individual galaxies with three sets of cosmological, hydrodynamical zoom simulations of 45 halos in the mass range 10^11<M_halo<10^13M_sun. Models including both galactic winds and metal cooling (i) suppress early star formation at z>1 and predict reasonable star formation histories, (ii) produce galaxies with high cold gas fractions (30-60 per cent) at high redshift, (iii) significantly reduce the galaxy formation efficiencies for halos (M_halo<10^12M_sun) at all redshifts in agreement with observational and abundance matching constraints, (iv) result in high-redshift galaxies with reduced circular velocities matching the observed Tully-Fisher relation at z~2, and (v) significantly increase the sizes of low-mass galaxies (M_stellar<3x10^10M_sun) at high redshift resulting in a weak size evolution - a trend in agreement with observations. However, the low redshift (z<0.5) star formation rates of massive galaxies are higher than observed (up to ten times). No tested model predicts the observed size evolution for low-mass and high-mass galaxies simultaneously. Due to the delayed onset of star formation in the wind models, the metal enrichment of gas and stars is delayed and agrees well with observational constraints. Metal cooling and stellar winds are both found to increase the ratio of in situ formed to accreted stars - the relative importance of dissipative vs. dissipationless assembly. For halo masses below ~10^12M_sun, this is mainly caused by less stellar accretion and compares well to predictions from semi-analytical models but still differs from abundance matching models. For higher masses, the fraction of in situ stars is over-predicted due to the unrealistically high star formation rates at low redshifts.
Over the last decades, cosmological simulations of galaxy formation have been instrumental for advancing our understanding of structure and galaxy formation in the Universe. These simulations follow the non-linear evolution of galaxies modeling a variety of physical processes over an enormous range of scales. A better understanding of the physics relevant for shaping galaxies, improved numerical methods, and increased computing power have led to simulations that can reproduce a large number of observed galaxy properties. Modern simulations model dark matter, dark energy, and ordinary matter in an expanding space-time starting from well-defined initial conditions. The modeling of ordinary matter is most challenging due to the large array of physical processes affecting this matter component. Cosmological simulations have also proven useful to study alternative cosmological models and their impact on the galaxy population. This review presents a concise overview of the methodology of cosmological simulations of galaxy formation and their different applications.